Antitumor antisense sequences directed against ribonucleotide re

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Carbohydrate doai

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

435 6, 435 911, 435183, 435325, 435354, 435357, 435366, 435375, 435440, 536 232, 536 2431, 536 2433, 536 245, A61K 4800, C12Q 168, C12N 1585, C07H 2104

Patent

active

059983833

ABSTRACT:
A synthetic antisense oligonucleotide comprising at least seven nucleotides or nucleotide analogues having a sequence complementary to the mRNA sequence of ribonucleotide reductase dimeric protein component R2 including SEQ ID Nos:1-102 is disclosed. A synthetic antisense oligonucleotide comprising at least seven nucleotides or nucleotide analogues having a sequence complementary to the mRNA sequence of ribonucleotide reductase dimeric protein component R1 including SEQ ID Nos:103-161 is also disclosed. The invention also discloses pharmaceutical compositions including the synthetic antisense oligonucleotides of the present invention and methods of using the antisense oligonucleotides to modulation proliferative cells including neoplastic cells.

REFERENCES:
Fan et al., The R1 Component of Mammalian Ribonucleotide Reductase Has Malignancy-Suppressing Activity as Demonstrated by Gene Transfer Experiments, Proc. Natl. Acad. Sci. 94, 13181-13186 (1997).
Stull et al., Antigene, Ribozyme and Aptamer Nucleic Acid Drugs: Progress and Prospects, Pharmaceutical Research 12 (4) 465-483 (1995).
Saison-Behmoaras et al., Short Modified Antisense Oligonucleotides Directed Against Ha-Ras Point Mutation Induce Selective Cleavage of the mRNA and Inhibit T24 Cells Proliferation, EMBO J. 10(5) 1111-1118 (1991).
Bjorklund et al., S-Phase --Specific Expression of Mammalian Ribonucleotide Reductase R1 and R2 Subunit mRNAs, Biochemistry 29, 5452-5458 (1990).
Gewirtz et al. PNAS. vol. 93, pp. 3161-3163 (Apr. 1996).
Branch. TIBS. vol. 23. pp. 45-50 (Feb. 1998).
Gura. Science. vol. 278. pp. 1041-1042 (Nov. 7, 1997).
Agrawal, 1996. Antisense oligonucleotides: towards clinical trials, Tibtech, 14:376.
Agarwal et al., 1995. Oncogen, 11:427-438.
Akhter et al, 1991. Interactions of antisense DNA oligonucleotide analogs with phospholipid membranes (liposomes). Nuc. Res. 19:5551-5559.
Alessi et al., 1995. Meth. Enzymol. 255:279-290.
Amara et al., 1994. Phorbol ester modulation of a novel cytoplasmic protein binding activity at the 3'-untranslated region of mammalian ribonucleotide reductase R2 mRNA and role in message stability. J. Biol. Chem. 269:6709-7071.
Amara et al, 1995B. Defining a novel cis element in the 3'-untranslated region of mammalian ribonucleotide reductase component R2 mRNA: Role in transforming growth factor b.sub.1 induced mRNA stabilization. Nucleic Acids Res. 23:1461-1467.
Amara et al. 1996. Defining a novel cis-element in the 3'-untranslated region of mammalian ribonucleotide reductase component R2 mRNA: cis-trans interactions and message stability. J. Biol. Chem. 271:20126-20131.
Anazodo et al., 1995. Sequence-Specific Inhibition of Gene Expression by a Novel Antisense oligodeoxynucleotide Phosphonothioate Directed Against a Nonregulatory Region of the Human Immunodeficiency Virus Type 1 Genome. J. Virol. 69: 1794-1801.
Anazodo et al., 1996. Relative Levels of Inhibition of p24 Gene Expression by Different 20-mer Antisense Oligonucleotide Sequences Targeting Nucleotides + 1129 to +1268 of the HIV-1 gag Genome: An Analysis of Mechanism Biochem. Biophys. Res. Commun. 229: 305-309.
Ashihara and Baserga, 1979. Cell Synchronization. Methods Enzymol. 58:248-262.
Blaesse, 1997. Gene Therapy for Cancer. Scientific American 276(6):111-115.
Bjorklund et al., 1993. Structure and promoter characterization of the gene encoding the large subunit (R1 Protein) of mouse ribonucleotide reductase. Proc. Natl. Acad. Sci. USA 90:11322-11326.
Blin and Stafford, 1976. A general method for isolation of high molecular weight DNA from eukaryotes. Nucleic Acids Res., 3: 2303-2308.
Blosmanis et al., 1987. Cancer Res 47:1273-1277.
Bradley et al., 1986. Proc. Natl. Acad. Sci. USA 83: 5277-5281.
Calabretta, et al, 1996. Antisense strategies in the treatment of leukemias. Semin. Oncol. 23:78.
Caras, 1985. Cloned Mouse Ribonucleotide Reductase Subunit M1 cDNA Reveals Amino Acid Sequence Homology with Escherichia coli and Herpesvirus Ribonucleotide Reductases. Biol Chem. 260:7015-7022.
Chadee et al, 1995. J. Biol. Chem. 270:20098-20105.
Chan et al., 1993. Biochemistry 32:12835-12840.
Chang et al., 1978. Phenotypic expression in E. coli of a DNA sequence coding for mouse dihydrofolate reductase. Nature, 275: 617-624. [*n/a--will mail in].
Chen et al., 1993. Mammalian ribonucleotide reductase R1 mRNA stability under normal and phorbol ester stimulating conditions: involvement of a cis-trans interaction at the 3'-untranslated region. EMBO J., 12:3977-3986.
Chen et al., 1994B. Defining a novel ribonucleotide reductase R1 mRNA cis element that binds to an unique cytoplasmic trans-acting protein. Nucleic Acids Res., 22:4796-4797.
Choy et al., 1988. Molecular mechanisms of drug resistance involving ribonucleotide reductase: hydroxyurea resistance in a series of clonally related mouse cell lines selected in the presence of increasing drug concentrations. Cancer Res. 48:2029-2035.
Damen et al., 1989. Generation of metastatic variants in populations of mutator and amplificator mutants. J. Natl. Cancer Inst. 81:628-631.
Damen et al., 1991. Transformation and amplification of the K-fgf Protooncogene in NIH-3T3 cells, and induction of metastatic potential. Biochem Biophys. Acta 1097: 103-110.
Davis et al., 1994. Purification, Characterization, and Localization of Subunit Interaction Area of Recombinant Mouse Ribonucleotide Reductase R1 Subunit. Biol. Chem. 269:23171-23176.
Eckstein 1985. Nucleoside Phosphorothioates. Ann. Rev. Biochem. 54:367-402.
Egan, et al., 1987A. Expression of H-ras Correlates with Metastatic Potential: Evidence for Direct Regulation of the Metastatic Phenotype in 10T1/2 and NIH 3T3 Cells. Mol. Cell. Biol. 7:830-837.
Egan et al., 1987B. Transformation by oncogenes encoding protein kinases induces the metastatic phenotype. Science 238:202-205.
Eriksson et al., 1984. Cell cycle-dependent regulation of mammalian ribonucleotide reductase. The S phase-correlated increase in subunit M2 is regulated by de novo protein synthesis. J. Biol. Chem. 259:11695-11700.
Fan et al., 1996A. Ribonucleotide reductase R2 component is a novel malignancy determinant that cooperates with activated oncogenes to determine transformation and malignant potential. Proc. Natl. Acad. Sci. USA 93:14036-14040.
Fan et al., 1996B. A link between ferritin gene expression and ribonucleotide reductase R2 protein, as demonstrated by retroviral vector mediated stable expression of R2 cDNA. FEBS Lett. 382:145-148.
Felgner, 1997. Nonviral Strategies for Gene Therapy. Scinetific American. Jun., 1997, pp. 102-106.
Flintoff, 1989. Methotrexate, In: Gupta, R.S. (ed.), Drug Resistance in Mammalian Cells, Boca Raton, Florida: CRC Press, 1-14.
Gewirtz, 1993. Oligodeoxynucleotide-based therapeutics for human leukemias, Stem Cells Dayt. 11:96.
Gilboa et al., 1986. Transfer and expression of cloned genes using retroviral vectors. BioTechniques 4(6):504-512.
Gannon et al., 1990. Activating mutations in p53 produce a common conformational effect. A monoclonal antibody specific for the mutant form. EMBO J., 9: 1595-1602.
Hampel and Tritz, 1989. RNA Catalytic Properties of the Minimum (-) sTRSV Sequence. Biochemistry 28:4929-4933.
Hanania, et al 1995. Recent advances in the application of gene therapy to human disease. Am. J. Med. 99:537.
Huang et al., 1995A. Drug resistance and gene amplification potential regulated by transforming growth factor b.sub.1 gene expression. Cancer Res. 55:1758-1762.
Huang et al., 1995B. Multiple effects on drug sensitivity, genome stability and malignant potential by combinations of H-as, c-myc and mutant p53 gene overexpression. Int. J. Oncol. 7:57-63.
Hunter, 1995. Protein kinases and phosphatases: The yin and yang of protein phosphorylation and signalling. Cell, 80: 225-236.
Hurta, et al., 1991. Early induction of ribonucleotide reductase gene expression by transforming growth factor b.sub.1 in malignant H-ras transformed cell lines. J. Biol. Chem. 266:24097-24100.
Hurta and Wright, 1992. Alterations in the activity and regulation of mammalian ribonucleotide reductase by chlorambucil, a DNA damaging agent. J. Biol. Chem. 267:7066-707

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Antitumor antisense sequences directed against ribonucleotide re does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Antitumor antisense sequences directed against ribonucleotide re, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Antitumor antisense sequences directed against ribonucleotide re will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-823873

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.