Antithrombotic materials and methods

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Peptide containing doai

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C514S021800, C514S822000, C530S324000, C530S350000, C530S829000, C424S529000, C424S532000

Reexamination Certificate

active

06599881

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates generally to therapeutic compositions and treatment methods utilizing bactericidal/permeability-increasing protein (BPI) protein products for the treatment of thrombotic disorders.
The coagulation, or blood clotting process is involved both in normal hemostasis, in which the clot stops blood loss from a damaged blood vessel, and in abnormal thrombosis, in which the clot blocks circulation through a blood vessel. During normal hemostasis, the platelets adhere to the injured blood vessel and aggregate to form the primary hemostatic plug. The platelets then stimulate local activation of plasma coagulation factors, leading to generation of a fibrin clot that reinforces the platelet aggregate. Later, as wound healing occurs, the platelet aggregate and fibrin clot are degraded by specifically activated proteinases. During the pathological process of thrombosis, the same mechanisms create a platelet/fibrin clot that occludes a blood vessel. Arterial thrombosis may produce ischemic necrosis of the tissue supplied by the artery, e.g., myocardial infarction due to thrombosis of a coronary artery, or stroke due to thrombosis of a cerebral artery. Venous thrombosis may cause the tissues drained by the vein to become edematous and inflamed, and thrombosis of a deep vein may result in a pulmonary embolism.
An increased tendency toward thrombosis accompanies surgery, trauma, many inflammatory disorders, malignancy, pregnancy, obesity, vascular disorders and prolonged immobilization. Inherited thrombotic tendencies, which are much rarer, are being increasingly recognized and include deficiencies of the protein C-protein S system, deficiencies of antithrombin III (ATIII), dysfibrinogenemias, and other disorders of the fibrinolytic system. The evaluation of hypercoagulable risk involves checking for a family history of thromboembolism, and for other systemic predisposing diseases or conditions that favor localized vascular stasis (such as prolonged immobilization, pregnancy, or malignancy) and evaluating possible laboratory abnormalities, such as thrombocytosis, elevated blood or plasma viscosity, and elevated plasma levels of coagulation factors or fibrin degradation products. Levels of ATIII, protein C, or protein S levels, may also be measured, although hypercoagulability due to such abnormalities is uncommon compared to factors such as stasis or localized injury.
Severe derangements of the coagulation process are seen in disseminated intravascular coagulation (DIC), a syndrome characterized by the slow formation of fibrin microthrombi in the microcirculation and the development of concomitant fibrinolysis. The net result of these processes is the consumption of platelets and clotting factors in the thrombotic process, and the proteolytic digestion of several clotting factors by the fibrinolytic process, leading to decreased coagulability of the patient's blood. DIC never occurs as a primary disorder; it is always secondary to another disorder. These primary disorders fall into three general categories: (1) release of procoagulant substances into the blood, as may occur in amniotic fluid embolism, abruptio placentae, certain snake bites, and various malignancies, (2) contact of blood with an injured or abnormal surface, as may occur in extensive burns, infections, heat stroke, organ grafts, and during extracorporal circulation, and (3) generation of procoagulant-active substances within the blood, as may occur if red or white blood cell or platelet membranes become damaged and release thromboplastic substances, e.g., during leukemia treatment, hemolytic transfusion reactions and microangiopathic hemolytic anemia. Bacterial endotoxins on, associated with or released from gram-negative bacteria also have thromboplastin-like properties that initiate clotting.
Intravascular clotting occurs most frequently with shock, sepsis, cancer, obstetric complications, burns, and liver disease. There are no specific symptoms or signs unique to DIC. Bleeding, however, is much more evident than thrombosis. The rate and extent of clotting factor activation and consumption, the concentration of naturally occurring inhibitors, and the level of fibrinolytic activity determine the severity of the bleeding tendency. In some patients there is no clinical evidence of bleeding or thrombosis, and the syndrome becomes apparent only as a consequence of abnormal blood coagulation tests. Many patients develop only a few petechiae and ecchymotic areas and bleed a little more than usual from venipuncture sites. More pronounced forms of diffuse intravascular clotting may become evident as a result of severe gastrointestinal hemorrhage or genitourinary bleeding. In some instances bleeding may cause death. Hemorrhage caused by the DIC syndrome can be especially life threatening in association with obstetric complications or in conjunction with surgery.
The endpoint of the coagulation process is the generation of a powerful serine protease, thrombin, which cleaves the soluble plasma protein fibrinogen so that an insoluble meshwork of fibrin strands develops, enmeshing red cells and platelets to form a stable clot. This coagulation process can be triggered by injury to the blood vessels and involves the rapid, highly controlled interaction of more than 20 different coagulation factors and other proteins to amplify the initial activation of a few molecules to an appropriately sized, fully developed clot. Most of the coagulation proteins are serine proteases that show a high degree of homology (Factors II, VII, IX, and X); others are cofactors without enzyme activity (Factors V and VIII). These proteins circulate as inactive zymogens in amounts far greater than are required for blood clotting. Both the injured vessel wall and platelet aggregates provide specialized surfaces that localize and catalyze the coagulation reactions.
The coagulation cascade can be initiated via two different activation pathways: the intrinsic pathway, involving contact with injured tissue or other surfaces, and the extrinsic pathway, involving tissue factor expressed on injured or inflamed tissue. Both pathways converge into a common pathway when Factor X is activated at the platelet surface. [See, e.g., Cecil's Essentials of Medicine, 3rd ed., WB Saunders Co., Pennsylvania (1983); Goodman & Gilman, The Pharmacological Basis of Therapeutics, 9th ed., McGraw-Hill, NY (1996).] The intrinsic pathway begins when Factor XII is activated to XIIa by contact with the altered or injured blood vessel surface or with another negatively charged surface, such as a glass tube. Cofactors or promoters of Factor XII activation include prekallikrein, high molecular weight kininogen, and Factor XI. These proteins form a surface-localized complex which optimally activates Factor XII. The activated Factor XIIa then converts the complex-bound Factor XI to its active form, XIa, and also converts prekallikrein to its active form, kallikrein, which then cleaves high molecular weight kininogen to form bradykinin. In turn, Factor XIa requires calcium ions (Ca
2+
) to activate Factor IX to IXa. Factor XIa may also activate Factor VII (in the extrinsic pathway) as well. Activated Factor XIa also cleaves plasminogen to form plasmin, which is the main protease involved in the fibrinolytic mechanisms that restrain blood clotting. In the presence of Ca
2+
and phospholipid, Factor IXa activates Factor X to Xa, which is the first step in the common pathway. Factor X activation usually takes place at the plasma membrane of stimulated platelets but also may occur on the vascular endothelium.
In the extrinsic pathway, the release of tissue factor from injured tissues directly activates Factor VII to VIIa. Tissue factor is present in activated endothelium and monocytes as well as in brain, vascular adventitia, skin, and mucosa. Factor VIIa then activates Factor X to Xa in the presence of Ca
2+
. In addition, the tissue factor, Factor VII, and Ca
2+
form a complex that can activate Factor IX (in

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Antithrombotic materials and methods does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Antithrombotic materials and methods, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Antithrombotic materials and methods will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3067727

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.