Antithrombotic azacycloalkylalkanoyl peptides and pseudopeptides

Chemistry: natural resins or derivatives; peptides or proteins; – Peptides of 3 to 100 amino acid residues – Tripeptides – e.g. – tripeptide thyroliberin – etc.

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

514 18, 514 19, 530330, A61K 3806

Patent

active

058666850

DESCRIPTION:

BRIEF SUMMARY
BACKGROUND OF INVENTION

1. Field of Invention
This invention relates to compounds having antithrombotic activity. More particularly, the invention relates to azacycloalkylalkanoyl peptides and pseudopeptides that inhibit platelet aggregation and thrombus formation in mammals and which are useful in the prevention and treatment of thrombosis associated with disease states such as myocardial infarction, stroke, peripheral arterial disease and disseminated intravascular coagulation.
Haemostasis, the biochemistry of blood coagulation, is an extremely complex phenomena whereby normal whole blood and body tissue spontaneously arrest bleeding from injured blood vessels. Effective haemostasis requires the combined activity of vascular, platelet and plasma factors as well as a controlling mechanism to prevent excessive clotting. Defects, deficiencies, or excesses of any of these components can lead to hemorrhagic or thrombotic consequences.
Platelet adhesion, spreading and aggregation on extracellular matrices are central events in thrombus formation. These events are mediated by a family of adhesive glycoproteins, i.e., fibrinogen, fibronectin, and von Willebrand factor. Fibrinogen is a co-factor for platelet aggregation, while fibronectin supports platelet attachments and spreading reactions, and von Willebrand factor is important in platelet attachment to and spreading on subendothelial matrices. The binding sites for fibrinogen, fibronectin and von Willebrand factor have been located on the platelet membrane protein complex known as glycoprotein IIb/IIIa.
Adhesive glycoproteins, like fibrinogen, do not bind with normal resting platelets. However, when a platelet is activated with an agonist such as thrombin or adenosine diphosphate, the platelet changes its shape, perhaps making the GPIIb/IIIa binding site accessible to fibrinogen. Compounds within the scope of the present invention block the fibrinogen receptor, thus inhibiting platelet aggregation and subsequent thrombus formation and when administered in the form of pharmaceutical compositions comprising such compounds are useful for the prevention and treatment of thrombogenic diseases, such as myocardial infarction, stroke, peripheral arterial disease and disseminated intravascular coagulation.
2. Reported Developments
It has been observed that the presence of Arg-Gly-Asp (RGD) is necessary in fibrinogen, fibronectin and von Willebrand factor for their interaction with the cell surface receptor (Ruoslahti E., Pierschbacher, Cell 1986, 44, 517-18). Two other amino acid sequences also seem to take part in the platelet attachment function of fibrinogen, namely, the Gly-Pro-Arg sequence, and the dodecapeptide, His-His-Leu-Gly-Gly-Ala-Lys-Gln-Ala-Gly-Asp-Val sequence. Small synthetic peptides containing the RGD or dodecapeptide have been shown to bind to the platelet GPIIb/IIIa receptor and competitively inhibit binding of fibrinogen, fibronectin and von Willebrand factor as well as inhibit aggregation of activated platelets (Plow, et al., Proc. Natl. Acad. Sci. USA 1985, 82, 8057-61; Ruggeri, et al., Proc. Natl. Acad. Sci. USA 1986, 5708-12; Ginsberg, et al., J. Biol. Chem. 1985, 260, 3931-36; and Gartner, et al., J. Biol. Chem. 1987, 260,11,891-94).
Indolyl compounds containing guanidinoalkanoyl- and guandinoalkenoyl- aspartyl moieties are reported to be platelet-aggregation inhibitors by Tjoeng, et al., U.S. Pat. Nos. 5,037,808 and 4,879,313.
U.S. Pat. No. 4,992,463 (Tjoeng, et al.), issued Feb. 12, 1991, discloses generically that a series of aryl and aralkyl guanidinoalkyl peptide mimetic compounds exhibit platelet aggregation inhibiting activity and discloses specifically a series of mono- and dimethoxy phenyl peptide mimetic compounds and a biphenylalkyl peptide mimetic compound.
U.S. Pat. No. 4,857,508 (Adams, et al.), issued Aug. 15,1989, discloses generically that a series of guandinoalkyl peptide derivatives containing terminal aralkyl substituents exhibit platelet aggregation inhibiting activity and discloses specifically a series of O-methyl tyros

REFERENCES:
patent: 4683291 (1987-07-01), Zimmerman et al.
patent: 4857508 (1989-08-01), Adams et al.
patent: 4879313 (1989-11-01), Tjoeng et al.
patent: 4992463 (1991-02-01), Tjoeng et al.
patent: 5023233 (1991-06-01), Nutt et al.
patent: 5037808 (1991-08-01), Tjoeng et al.
Plow et al., Inhibition of fibrinogen binding to human platelets by the tetrapeptide glycyl-L-prolyl-L-arginyl-L-proline, Proc.Natl.Acad.Sci., vol. 79, pp. 3711-3715 (Jun. 1982).
Ginsberg et al., Inhibition of Fibronectin Binding to Platelets by Proteolytic Fragments and Synthetic Peptides Which Support Fibroblast, J.Bio.Chem., vol. 260, No. 7, pp. 3931-3936 (Apr. 10, 1985).
Haverstick et al., Inhibition of Platelet Adhesion to Fibronectin, Fibrinogen, and von Willebrand Factor Substrates by a Synthetic Tetrapeptide Derived from the Cell-Binding Domain of Fibronectin, Blood, vol. 66, No. 4, pp. 946-952 (Oct. 1985).
Gartner et al., The Tetrapeptide Analogue of the Cell Attachment Site of Fibronectin Inhibits Platelet Aggregation and Fibrinogen Binding to Activated Platelets, J.Bio.Chem., vol. 260, No. 22, pp. 11891-11894 (Oct. 5, 1985).
Plow et al., The effect of Arg-Gly-Asp-Containing peptides on fibrinogen and on Willebrand factor binding to platelets, Natl.Acad.Sci., vol. 82, pp. 8057-8061 (Dec. 1985).
Ruoslahti et al., Arg-Gly-Asp: A Versatile Cell Recognition Signal, Cell, vol. 44, pp. 517-518 (Feb. 28, 1986).
Ruggeri et al., Inhibition of platelet function with synthetic peptides designed to be high-affinity antagonists of fibrinogen binding to platelets, Proc.Natl.Acad.Sci., vol. 83, pp. 5708-5712 (Aug. 1986).

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Antithrombotic azacycloalkylalkanoyl peptides and pseudopeptides does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Antithrombotic azacycloalkylalkanoyl peptides and pseudopeptides, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Antithrombotic azacycloalkylalkanoyl peptides and pseudopeptides will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-1118454

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.