Stock material or miscellaneous articles – Composite – Of silicon containing
Reexamination Certificate
2002-07-11
2003-07-22
Foelak, Morton (Department: 1711)
Stock material or miscellaneous articles
Composite
Of silicon containing
C428S308400, C521S077000
Reexamination Certificate
active
06596405
ABSTRACT:
BACKGROUND OF THE INVENTION
This invention relates generally to the manufacture of electronic devices. In particular, this invention relates to the manufacture of electronic devices having antireflective dielectric layers.
As electronic devices become smaller, there is a continuing desire in the electronics industry to increase the circuit density in electronic components, e.g., integrated circuits, circuit boards, multichip modules, chip test devices, and the like without degrading electrical performance, e.g., crosstalk or capacitive coupling, and also to increase the speed of signal propagation in these components. One method of accomplishing these goals is to reduce the dielectric constant of the interlayer, or intermetal, insulating material used in the components.
A variety of organic and inorganic porous dielectric materials are known in the art in the manufacture of electronic devices, particularly integrated circuits. Suitable inorganic dielectric materials include silicon dioxide and organo polysilicas. Suitable organic dielectric materials include thermosets such as polyimides, polyarylene ethers, polyarylenes, polycyanurates, polybenzazoles, benzocyclobutenes and the like. Of the inorganic dielectrics, the alkyl silsesquioxanes such as methyl silsesquioxane are of increasing importance because of their lower dielectric constant.
A method for reducing the dielectric constant of interlayer, or intermetal, insulating material is to incorporate within the insulating film very small, uniformly dispersed pores or voids. In general, such porous dielectric materials are prepared by first incorporating a removable porogen into a B-staged dielectric material, disposing the B-staged dielectric material containing the removable porogen onto a substrate, curing the B-staged dielectric material and then removing the porogen to form a porous dielectric material. For example, U.S. Pat. No. 5,895,263 (Carter et al.) discloses a process for forming an integrated circuit containing porous organo polysilica dielectric material. U.S. Pat. No. 6,093,636 (Carter et al.) discloses a process for forming an integrated circuit containing porous thermoset dielectric material. Copending U.S. patent application Ser. No. 09/460,326 (Allen et al.), discloses porogen particles that are substantially comdatibiliznd with B-staged dielectric matrix materials and methods of preparing electronic devices using such porogens.
After the porous dielectric material is formed, it is subjected to conventional processing conditions of patterning, etching apertures, optionally applying a barrier layer and/or seed layer, metallizng or filling the apertures, planarizing the metallized layer, and then applying a cap layer or etch stop. These process steps may then be repeated to form another layer of the device.
Dielectric layers are patterned using photoresists. Photoresists are photosensitive Elms used for transfer of an image to a substrate. A coating layer of a photoresist is formed on a substrate, such as a dielectric layer, and the photoresist layer is then exposed through a photomask (reticle) to a source of activating radiation. The photomask has areas that are opaque to activating radiation and other areas that are transparent to activating radiation. Exposure to activating radiation provides a photoinduced chemical transformation of the photoresist coating to thereby transfer the pattern of the photomask to the photoresist coated substrate. Following exposure, the photoresist is developed to provide a relief image that permits selective processing of a substrate.
A photoresist can be either positive-acting or negative-acting. For most negative-acting photoresists, those coating layer portions that are exposed to activating radiation polymerize or cross-link in a reaction between a photoactive compound and polymerizable reagents of the photoresist composition. Consequently, the exposed coating portions are rendered less soluble in a developer solution than unexposed portions. For a positive-acting photoresist, exposed portions are rendered more soluble in a developer solution while areas not exposed remain comparatively less developer soluble. Photoresist compositions are known to the art and described by Deforest, Photoresist Materials and Processes, McGraw Hill Book Company, New York, ch. 2, 1975 and by Moreau, Semiconductor Lithography, Principles, Practices and Materials, Plenum Press, New York, ch. 2 and 4, both incorporated herein by reference to the extent they teach photoresist compositions and methods of making and using them.
In the manufacture of electronic devices, reflection of actinic radiation during exposure of the photoresist is detrimental to fine feature formation. Reflection of actinic radiation, such as from the layer underlying the photoresist, often poses limits on resolution of the image patterned in the photoresist layer. Reflection of radiation from the substrate/photoresist interface can produce variations in the radiation intensity in the photoresist during exposure, resulting in non-uniform photoresist linewidth upon development. Radiation also can scatter from the substrate/photoresist interface into regions of the photoresist where exposure is not intended, again resulting in linewidth variations. The amount of scattering and reflection will typically vary from region to region, resulting in further linewidth non-uniformity.
Reflection of activating radiation also contributes to what is known in the art as the “standing wave effect.” To eliminate the effects of chromatic aberration in exposure equipment lenses, monochromatic or quasi-monochromatic radiation is commonly used in photoresist projection techniques. Due to radiation reflection at the photoresist/substrate interface, however, constructive and destructive interference is particularly significant when monochromatic or quasi-monochromatic radiation is used for photoresist exposure. In such cases the reflected light interferes with the incident light to form standing waves within the photoresist. In the case of highly reflective substrate regions, the problem is exacerbated since large amplitude standing waves create thin layers of underexposed photoresist at the wave minima. The underexposed layers can prevent complete photoresist development causing edge acuity problems in the photoresist profile. The time required to expose the photoresist is generally an increasing function of photoresist thickness because of the increased total amount of radiation required to expose an increased amount of photoresist. However, because of the standing wave effect, the time of exposure also includes a harmonic component which varies between successive maximum and minimum values with the photoresist thickness. If the photoresist thickness is non-uniform, the problem becomes more severe, resulting in variable linewidths.
With recent trends towards high-density semiconductor devices, there is a movement in the industry to shorten the wavelength of exposure sources to deep ultraviolet (DUV) light (300 nm or less in wavelength), KrF excimer laser light (248 nm), ArF excimer laser light (193 nm), electron beams and soft x-rays. The use of shortened wavelengths of light for imaging a photoresist coating has generally resulted in increased reflection from the upper resist surface as well as the surface of the underlying substrate, thus exacerbating the problems of reflection from a substrate surface.
Radiation reflection problems have been addressed by a variety of means, such as the addition of certain dyes to photoresist compositions, the dyes absorbing radiation at or near the wavelength used to expose the photoresist. Conventionally, a radiation absorbing layer either interposed between the substrate surface and the photoresist coating layer, called a bottom antireflective coating or BARC, or a radiation layer disposed on the surface of the photoresist layer, called a top antireflective coating or TARC, is used to reduce the problem of reflection of actinic radiation. See, for example, PCT Application WO 90/03598, EPO Application No.
Gallagher Michael K.
Zampini Anthony
Cairns S. Matthew
Foelak Morton
Shipley Company L.L.C.
LandOfFree
Antireflective porogens does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Antireflective porogens, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Antireflective porogens will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3048108