Antioxidants in clusters of structured water

Drug – bio-affecting and body treating compositions – Preparations characterized by special physical form – Cosmetic – antiperspirant – dentifrice

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S725000

Reexamination Certificate

active

06451328

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to structured water and compositions containing structured water. In particular, the invention relates to antioxidants within the cluster structures of structured water, and the inherent antioxidant activity of structured water enhanced by the presence of an antioxidant within its cluster structure.
BACKGROUND OF THE INVENTION
Many have speculated on how water interacts with cellular components, and authors have postulated that water may in fact change structure and function once it enters into tissues and cells (see, e.g., Stillinger, “Water Revisited”, Science 209, no. 4455, pp. 451-457 (1980)). Taking this theory into consideration, it is understandable that the use of I and S structured waters in compositions has been growing. For example, several oil-in-water emulsions are disclosed in RO 107546, RO 107545, and RO 107544 using structured water. These compositions relate to the use of structured water in specific cosmetic products, for the treatment of oily skin, dry skin, or acne.
Different biological properties have been suggested for the two types of structured water. S water is said to have a stimulatory effect on enzymatic and other biosynthetic processes; whereas, I water is said to be inhibitory of the same processes. Substantial differences are found among the UV spectra of I, S, tap and deionized waters, particularly in the 200 to 250 nm band. When their reactivities are measured in an electronographic field, I, S and tap waters also show significant differences. In particular, with respect to tap water, the total light flux emitted after electronographic stimulation with a positive impulse, I
+
, is substantially equivalent to its negative impulse, I

. For structured water, on the other hand, S water stimulated in the same way exhibits a very high light reactivity to a positive impulse, while its reactivity to a negative impulse is almost equivalent to that of distilled water, yielding a positive to negative ratio of greater than 1. In addition, I water samples show a high light reactivity to a negative impulse, with reactivity to a positive impulse approximately equivalent to distilled water, and having a ratio of positive to negative less than 1.
Active agents are commonly added, as separate and individual components, to compositions to impart a particular function on a target. The antioxidant is a particular active agent known to prevent the harmful effects caused by reactive oxygen species or oxidants. Reactive oxidants affect virtually all aspects of biological life by reacting with and modifying structural and functional cell systems. In biological systems, the free radical reaction is controlled by complex enzymatic and non-enzymatic defense and repair systems. Oxidative injury can occur when the antioxidant defense system does not prevent, intercept, and repair impaired processes. Such injuries can be harmful to organs such as the skin which is particularly vulnerable due to its extensive exposure to harmful visible and ultraviolet irradiation and high oxygen concentrations, and due to the presence of structures in the skin which are critical for maintaining cellular homeostasis, but which are susceptible to degradation due to oxidation.
In particular, there are four types of reactive oxygen species, superoxide, hydrogen peroxide, hydroxyl radical and singlet-oxygen which pose a threat to the skin. Superoxide radicals are produced by adding one electron to an oxygen molecule, and are formed by ultraviolet radiation and enzymatic reactions. Reactions with other superoxide radicals produce hydrogen peroxide, and some cells make hydrogen peroxide. Hydrogen peroxide is a byproduct of superoxide radical destruction and functions as a germicide, a desirable result. Hydrogen peroxide is not in and of itself a powerful oxidant, however, it is of concern because it can diffuse rapidly, and it can cross both cell membranes and nuclear membranes. Of greater concern, as it pertains to hydrogen peroxide, is its conversion to hydroxyl radicals, the greatest oxidative threat to cells. This conversion occurs quickly and easily in the presence of iron. Finally, the singlet oxygen is produced when oxygen molecules are irradiated by ultraviolet light to an excited state. In this state, one of the unpaired electrons is elevated to a higher energy level and is capable of attacking double bonds of fatty tissue.
Because of the destructive nature of oxidants, biological active agents like antioxidants are used to prevent this damage. Many topically applied products, especially those used for skin care, contain antioxidants such as for example, beta carotene, tocopherol, green tea extract, BHT, ascorbic acid and the like. However, like other biological active agents and like the targets they are intended to protect, antioxidants are vulnerable. Antioxidants can be unstable and lose their activity. In addition, as a result of their instability, other undesirable effects may be experienced in compositions containing them. For example, when antioxidants degrade, they may change color or develop an odor. Thus, there is a need to stabilize antioxidants against destabilizing factors such as, for example, light, oxygen, pH and temperature. In addition, there may be a desire to use lower amounts of antioxidants in a composition, for example, to achieve cost savings or to prevent minor irritation which may be experienced with sensitive skin. There is further a need to maximize the effectiveness of the antioxidant while minimizing the amount of the antioxidant used.
In UK Patent Application GB 2335142, I and S waters are described as being able to enhance the level of certain types of actives, including an antioxidant. This result has been observed with materials of very distinct chemical identity and biological activity, particularly, caffeine as an anti-irritant, and BHT as an antioxidant. However, these biological actives are in simple admixture with the structured water (i.e., the active is added to the structured water, but is separate from the cluster structures of the structured water). Structured water has not been known to have antioxidant activity either inherently or enhanced by the presence of the antioxidant integrated within its cluster structure. Further, antioxidants have not been known to be stabilized within the cluster structure of structured water. Furthermore, their use in cosmetic or pharmaceutical compositions has not been previously been disclosed. It has now surprisingly been discovered that structured water has inherent antioxidant activity and that incorporation of an antioxidant inside of cluster structures of structured water can be achieved and can have a beneficial stabilizing effect on the antioxidant.
SUMMARY OF THE INVENTION
The present invention relates to structured water comprising at least one cluster structure and at least one antioxidant agent within the cluster structure, and compositions containing the structured water of the present invention. The antioxidant arranged within the cluster structure of structured water is stabilized and the inherent antioxidant activity of structured water is enhanced. The structured water of the present invention, either the structured water itself or having the antioxidant in its cluster structure, can be added to cosmetic or pharmaceutical compositions in an antioxidant effective amount.
The antioxidant is integrated in a cluster structure of structured water by feeding a solution of unstructured feed water containing the antioxidant through a device for producing structured water. The antioxidant is added to the feed water before the structured water is produced. Supplying the combined antioxidant and feed water through the device causes the feed water to divide into fractions of clusters which form the cluster structures of the structured water. The antioxidant is integrated within the cluster structures.
The present invention also includes a method of stabilizing the antioxidant agent as the antioxidant is protected inside of the cluster structu

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Antioxidants in clusters of structured water does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Antioxidants in clusters of structured water, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Antioxidants in clusters of structured water will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2822823

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.