Drug – bio-affecting and body treating compositions – Plant material or plant extract of undetermined constitution...
Reexamination Certificate
2000-09-07
2002-03-26
Tate, Christopher R. (Department: 1651)
Drug, bio-affecting and body treating compositions
Plant material or plant extract of undetermined constitution...
Reexamination Certificate
active
06361803
ABSTRACT:
BACKGROUND OF THE INVENTION
1. The Field of the Invention
The present invention relates to methods of extracting anti-oxidant compositions from olives and the by-products of olive oil production. More specifically, the present invention provides simple and efficient methods of obtaining compositions rich in antioxidant compounds from fresh olives, from olive pulps produced as a by-product of olive oil manufacturing, from olive oil, and from wastewater from olive oil manufacturing. The invention also relates to antioxidant compositions and products containing the antioxidant compositions.
2. The Relevant Technology
The Mediterranean diet, a diet rich in fresh fruits, vegetables and relatively low in animal fats, has long been considered exemplary of healthy diets. Part of the perceived health benefits of the Mediterranean diet has been attributed to the consumption of olive oil as the principal dietary fat. (See, e.g., Willett, W., Sacks, F., Trichopoulou, A., Drescher, G., Ferro-Luzzi, A., Helsing, E., Trichopoulos, D., “Mediterranean diet pyramid: a cultural model for healthy eating”, Am. J. Clin. Nutr., 1995; 61(suppl): 1402S-1406S.) Indeed, consumption of olive oil has been shown to be associated with a variety of health benefits, including a lower incidence of heart disease and a lower incidence of breast cancer. Visioli, F., Galli, C., “Natural antioxidants and prevention of coronary heart disease: the potential role of olive oil and its minor constituents”, Nut. Metab. Cardiovasc. Dis., 1995; 5: 306-314; and Trichopoulou, A., Katsouyanni, K., Stuver, S., Tzala, L., Gnardellis, C., Rimm, E. and Trichopoulos, D., “Consumption of Olive Oil and Specific Food Groups in Relation to Breast Cancer Risk in Greece”, J. Nat. Cancer Inst., 1995; 87(2): 110-116. These findings have prompted considerable research into the composition of olive oil, and the nature of the components of olive oil responsible for the observed beneficial health effects.
Much of the benefit of olive oil consumption has been attributed to the presence of natural antioxidant compounds, several of which have been isolated. Among the antioxidant compounds that have been isolated from olive oil are various phenolic compounds, including hydroxytyrosol ((3,4-dihydroxyphenyl)ethanol), tyrosol (p-hydroxyphenylethanol), p-hydroxybenzoic acid, vanillic acid, caffeic acid, oleuropein and other phenolic compounds. The structures of several of these phenolic compounds are shown for reference.
These compounds have shown in vitro biological activity, including inhibition of platelet aggregation (Petroni, A., Blasevich, M., Salami, M., Papini, N., Montedoro, G. F., Galli, C., “Inhibition of platelet aggregation and eicosanoid production by phenolic components of olive oil”, Thrombosis Research, 1995; 78: 151-160), inhibition of LDL oxidation (Visioli, F., Bellomo, G., Montedoro, G., Galli, C., “Low density lipoprotein oxidation is inhibited in vitro by olive oil constituents”, Atherosclerosis, 1995; 117: 25-32), prevention of reactive oxygen metabolite (ROM)-induced cytotoxicity in human cell culture (Manna, C., Galletti, P., Cucciolla, V., Moltedo, O., Leone, A., Zappia, V., “The Protective Effect of the Olive Oil Polyphenol (3,4-Dihydroxyphenyl)ethanol Counteracts Reactive Oxygen Metabolite-Induced Cytotoxicity in Caco-2 Cells”, J. Nutr., 1997; 127: 286-292), inhibition of formation of thromboxane B
2
(TxB
2
) (Petroni, A., Blasevich, M., Salami, M., Servili, M., Montedoro, G. F., Galli, C., “A Phenolic Antioxidant Extracted from Olive Oil Inhibits Platlet Aggregation and Arachidonic Acid Metabolism in vitro”, World Rev. Nutr. Diet, 1994; 75: 169-172), and inhibition of formation of leukotriene B
4
(LTB
4
) (Petroni, A., Blasevich, M., Papini, N., Salami, M., Sala, A., Galli, C, Inhibition of leukocyte leukotriene B
4
production by an olive oil-derived phenol identified by mass-spectrometry”, Thrombosis Research, 1997; 87: 315-322). Thromboxane B
2
and leukotriene B
4
are two important substances secreted by polymorphonuclear leukocytes involved in pathophysiological processes related to chronic inflammation and vascular injury. In addition, phenolic compounds in olive oil have shown antibiotic activity with both antimicrobial (see, e.g., Juven, B., Henis, Y., “Studies on the antimicrobial activity of olive phenolic compounds”, J. Appl. Bacteriol., 1970; 33: 721-732) and antifungal properties (Mahmoud, A. L., “Antifungal action and antiaflatoxigenic properties of some essential oil constituents”, Lett. Appl. Microbiol., 1994; 19: 110-113). Moreover, animal studies have shown that LDL from olive oil-fed rodents is significantly more resistant to oxidation than control samples (Scaccini, C., Nardini, M., D'Aquino, M., Gentili, V., Di Felice, M., Tomassi, G., “Effect of dietary oils on lipid peroxidation and on antioxidant parameters of rat plasma and lipoprotein fractions”, J. Lipid Res., 1992; 33: 627-633). Thus, in light of the increasing amount of evidence showing the potential health benefits of olive oil and components of olive oil, it would be desirable to have processes for extracting antioxidant components from olive oil.
Despite the need for olive-derived antioxidant compositions, the prior art does not provide simple and effective processes for producing such compositions. European Patent Application No. EP 0 811 678 A1 discloses a process for extracting antioxidants from olives, in which olives are crushed, vacuum dried, and pressed to form a cake. The cake is then extracted with a hot medium chain triglyceride or a C
2
to C
6
alkylene glycol at a pressure of at least 40 bar, to obtain an antioxidant-enriched extract. This method requires the use of a pressure-piston apparatus for extraction, lyophilization equipment and supplies for freeze-drying, and other equipment and chemicals that result in a relatively complex, expensive process. Moreover, this process uses fresh green or ripe olives, which can be expensive.
Olive oil production, which also uses fresh olives, produces as by-products a solid olive mass, often called “pulp”, and wastewater from a water-olive slurry conventionally used in olive oil manufacturing. These olive oil production by-products, are potentially rich in antioxidant compounds, but have not been effectively exploited, due to the impracticality of extracting usable amounts of antioxidant compounds using conventional technology. Indeed, although it has been reported that olive oil production wastewater is rich in phenolic antioxidant compounds (Visioli, F., Vinceri, F. F., Galli, C., “Waste waters from olive oil production are rich in natural antioxidants”, Experientia, 1995; 51: 32-34), there still does not exist a simple and practical method of extracting such compounds from the wastewater. In addition, several inferior grades of olive oil now used in industrial (rather than culinary) applications, and therefore relatively inexpensive compared to culinary grade olive oil, offer potentially rich sources of antioxidant compounds. To date, however, these potential sources of beneficial antioxidants have not been effectively exploited.
Thus, there is a need for methods of obtaining antioxidant compositions from olives, olive oil and olive oil manufacturing by-products that do not suffer from the foregoing disadvantages.
SUMMARY OF THE INVENTION
It is an object of the invention to provide cheaper and more effective methods of extracting antioxidant compositions from olives.
It is another object of the invention to provide methods of extracting antioxidant compositions from olive oil.
It is another object of the invention to provide methods of using olive pulp by-products of olive oil manufacturing to produce antioxidant compositions.
It is another object of the invention to provide methods of using wastewater from olive oil manufacturing to produce antioxidant compositions.
It is another object of the invention to provide naturally-derived compositions rich in antioxidant components.
It is still another object of the invention to provide antioxidant compositions that can be used t
Cuomo John
Rabovskiy Alexandre B.
Flood Michele C.
Tate Christopher R.
Usana, Inc.
Workman & Nydegger & Seeley
LandOfFree
Antioxidant compositions extracted from a wastewater from... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Antioxidant compositions extracted from a wastewater from..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Antioxidant compositions extracted from a wastewater from... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2881284