Stock material or miscellaneous articles – Coated or structually defined flake – particle – cell – strand,... – Rod – strand – filament or fiber
Reexamination Certificate
1999-03-29
2001-07-10
Dixon, Merrick (Department: 1774)
Stock material or miscellaneous articles
Coated or structually defined flake, particle, cell, strand,...
Rod, strand, filament or fiber
C428S907000, C428S394000, C428S392000, C442S220000, C442S239000, C442S240000
Reexamination Certificate
active
06258455
ABSTRACT:
FIELD OF INVENTION
This invention relates generally to cleaning cloths. More particularly, this invention relates to a woven or knitted cleaning cloth comprising antimicrobial fiber combined with ultra-microfiber, microfiber or microfilament.
BACKGROUND OF INVENTION
It is presently known to use various types of woven and knitted cloths for cleaning purposes. Usually these cloths are made of natural fibers such as cotton or wool, or blends of such natural fibers with nylon, rayon, polyester, and the like. However, these cloths have several drawbacks when used for cleaning purposes.
First, because the fibers contained in such cloths are relatively large, they are incapable of removing particles and microbes that are smaller than the fibers of the cloth. Thus, although the cloths are able to remove relatively large particles, a substantial amount of the smaller particles and microbes are merely spread around the surface desired to be cleaned without being removed. This results in an incomplete cleaning operation.
A further problem with present woven or knitted cleaning cloths is that such cloths do not contain antimicrobial characteristics. As used herein, the term “antimicrobial” is intended to include both anti-fungicidal and anti-bacterial characteristics. Without antimicrobial characteristics, the prior cloths allow bacteria and fungi to propagate within the cloth, thus leading to unsanitary conditions in the cloth and a shorter useful life of the cloth. In addition, reuse of the same cloth may spread such bacteria and fungi to other surfaces.
A recent advancement in fiber technology has been the advent of microfibers, microfilaments and so-called “ultra-microfibers,” such as those sold by Olsson Cleaning Technology of Kristinehamn, Sweden. These fibers and filaments generally comprise polyamides and polyesters and are superior in many ways to traditional fibers due to their small size and structure. In particular, the ultra-microfibers are generally triangular in cross-section, have sharp edges, and have a diameter of approximately three microns. Because a bacterium typically has a diameter of two to five microns, the extremely small size and structure of the ultra-microfiber allows that fiber to get beneath the bacteria or other small microbes and particles that are smaller than the fiber, and substantially remove them from a surface. Additionally, to improve performance, the ultra-microfibers are usually mixed with polyester fibers in a 50/50 ratio in the case of woven material, and a 70/30 ratio of polyester to ultra-microfiber in the case of knitted material.
The cleaning properties of the ultra-microfibers are further enhanced because they have a cationic (positive) charge due to the presence of the polyamide in the ultra-microfibers. Most dirt and dust particles, bacteria, pollen, oxidation on metals, etc., have an anionic (negative) charge. Thus, the ultra-microfibers naturally attract negatively charged particles, bacteria, etc.
Besides the ultra-microfiber's ability to pick up small particles, the ultra-microfiber has superior absorption properties. This is because the ultra-microfiber's small diameter translates into a much larger surface area than that found in conventional fibers. The small diameter of the fibers also provides a particularly powerful capillary action, which, in addition to pulling in liquid, also pulls in particulates and microbes contained within the liquid. Thus, the combination of the increased surface area and capillary action gives the ultra-microfiber cloth the ability to absorb vast amounts of liquid many times its own weight.
The ultra-microfibers may be woven or knitted together to construct a cleaning material. The ultra-microfibers may first be woven or knitted in an un-split form using techniques known in the art. After the material is woven or knitted, such material is then subjected to a chemical and mechanical process that splits the ultra-microfiber into its component filaments. This is accomplished by using a combination of heat and alkali, as is also known in the art.
Unfortunately, like the woven and knitted cloths before it, the use of such ultra-microfiber materials allows for the propagation of microbes that are removed during cleaning operations. As stated earlier, the propagation of such microbes causes unsanitary conditions in the cloth and leads to a lessened useful life of the cloth. In addition, reuse of the same cloth may spread such microbes to other surfaces. Thus, there is currently a need for a cloth that can remove small particles and microbes from a surface, and at the same time keep the microbes from propagating throughout the cloth.
Other needs will become apparent upon consideration of the following detailed description taken in conjunction with the drawings.
SUMMARY OF THE PREFERRED EMBODIMENTS
In one form of the invention, the aforementioned needs are fulfilled by an antimicrobial material comprising at least one yarn comprising fine fiber of 1.0 denier or less and at least one yarn comprising antimicrobial fiber that are engaged with each other, wherein the antimicrobial fibers impart an antimicrobial property to the entire material. In a preferred embodiment, the yarns of fine fiber and yarns of antimicrobial fiber are woven or knitted together. It is further preferred that the fine fiber be less than 0.3 denier, have a diameter of approximately 3 microns, and have a generally triangular cross-section with sharp edges, therefore allowing the fine fiber to substantially remove bacteria, fungi and other microbes from a surface. It is also preferred that the antimicrobial fibers comprise an acetate fiber spun together with polyester to give the antimicrobial fiber added strength.
REFERENCES:
patent: 3699958 (1972-10-01), Szucs
patent: 3959556 (1976-05-01), Morrison
patent: 4343853 (1982-08-01), Morrison
patent: 4344853 (1982-08-01), Morrison
patent: 5804274 (1998-09-01), Nordin
patent: 5882357 (1999-03-01), Sun et al.
Dixon Merrick
Mayer Brown & Platt
Sweports Limited
LandOfFree
Antimicrobial ultra-microfiber cloth does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Antimicrobial ultra-microfiber cloth, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Antimicrobial ultra-microfiber cloth will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2488384