Antimicrobial transfer substrates and methods of use therewith

Bleaching and dyeing; fluid treatment and chemical modification – Chemical modification of textiles or fibers or products thereof

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C008S115600, C008S116100, C008S188000, C252S008610, C252S008630, C252S008820, 48, 48, 48, C510S515000

Reexamination Certificate

active

06454813

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to specific transfer methods and articles to impart a metal-ion based antimicrobial finish to recipient textile surfaces. Such treatments preferably comprise silver ions, particularly as constituents of inorganic metal salts or zeolites. In particular, the inventive method involves the application of a solid inorganic antimicrobial material to a donor substrate (such as a dryer sheet), and the subsequent placement of such a substrate within a tumble drying machine containing textile fabrics and operating the machine. The donor substrate, upon contact with the recipient textile fabrics, transfers antimicrobially effective amounts of the metal-ion based compounds to such recipient fabrics thereby imparting at least a temporary antimicrobial finish over at least a portion of such fabrics. The donor substrates, with either the antimicrobial compound alone or mixed with standard tumble dryer additives (such as perfumes, fabric softeners, fiber lubricants, and the like) are also contemplated within this invention.
DISCUSSION OF THE PRIOR ART
There has been a great deal of attention in recent years given to the hazards of bacterial contamination from potential everyday exposure. Noteworthy examples of such concern include the fatal consequences of food poisoning due to certain strains of
Eschericia coli
being found within undercooked beef in fast food restaurants; Salmonella contamination causing sicknesses from undercooked and unwashed poultry food products; and illnesses and skin infections attributed to
Staphylococcus aureus, Klebsiella pneumoniae
, yeast, and other unicellular organisms. With such an increased consumer interest in this area, manufacturers have begun introducing antimicrobial agents within various household products and articles. For instance, certain brands of polypropylene cutting boards, liquid soaps, etc., all contain antimicrobial compounds. The most popular antimicrobial for such articles is triclosan. Although the incorporation of such a compound within liquid or polymeric media has been relatively simple, other substrates, including the surfaces of textiles and fibers, have proven less accessible. There has a long-felt need to provide effective, durable, and long-lasting antimicrobial characteristics for textile surfaces, in particular on apparel fabrics, and on film surfaces. Such proposed applications have been extremely difficult to accomplish with triclosan, particularly when wash durability is a necessity (triclosan easily washes off any such surfaces). Furthermore, although triclosan has proven effective as an antimicrobial compound, the presence of chlorines within such a compound causes skin irritation which makes the utilization of such with fibers, films, and textile fabrics for apparel uses highly undesirable. Furthermore, there are commercially available textile products comprising acrylic and/or acetate fibers co-extruded with triclosan (for example Celanese markets such acetate fabrics under the name Microsafe™ and Acordis markets such acrylic fibers, under the tradename Amicor™). However, such an application is limited to those types of fibers; it does not work at all for natural fibers and specifically does not work for and/or within polyester, polyamide, cotton, spandex, etc., fabrics. Furthermore, this co-extrusion procedure is very expensive.
Silver-containing inorganic microbiocides have recently been developed and utilized as antimicrobial agents on and within a plethora of different substrates and surfaces. In particular, such microbiocides have been adapted for incorporation within melt spun synthetic fibers, as taught within Japanese unexamined Patent Application No. H11-124729, in order to provide certain fabrics which selectively and inherently exhibit antimicrobial characteristics. Furthermore, attempts have been made to apply such specific microbiocides on the surfaces of fabrics and yarns with little success from a durability standpoint. A topical treatment with such compounds has never been successfully applied as a durable finish or coating on a fabric or yarn substrate. Although such silver-based agents provide excellent, durable, antimicrobial properties, to date such is the sole manner available within the prior art of providing a long-lasting, wash-resistant, silver-based antimicrobial textile. However, such melt spun fibers are expensive to make due to the large amount of silver-based compound required to provide sufficient antimicrobial activity in relation to the migratory characteristics of such a compound within the fiber itself to its surface.
Attempts have been made in the past to apply an antimicrobial finish to a textile through transfer from a dryer sheet within a tumble dryer machine as taught within U.S. Pat. Nos. 5,145,596 and 5,221,574. The transfer is effectuated through the continuous and repetitive contact between the dryer sheet and the target textile. However, these particular methods disclose the transfer of gelled or liquefied (due to the friction and heat within the tumble dryer itself) organic treatments and/or compounds from the sheet to the textile. There is no mention of the transfer of inorganic solids (i.e., do not gel or liquefy) within these teachings. The patented transfer methods are performed quite easily due to the ability of such gelled or liquefied organic materials to effectively move from one surface to another through frictional contact.
Inorganic, solid antimicrobial materials (such as, for example, metal-ion based antimicrobials), as noted above, provide excellent antimicrobial characteristics, but have not been utilized on dryer sheets for transfer to textiles in the past. This past lack of interest was due to the difficulties involved with actually keeping the solid compound(s) in place on the dryer sheet surface. Furthermore, the transfer from dryer sheet to textile would also appear to be rather difficult since the transferred materials are solids and most likely possess rather high molecular weights. Even if the solids are contacted with the target textile, the ability for the treated surface to retain such solids during tumble drying seems nearly impossible. However, the ability to provide an antimicrobial treatment of a highly desirable and effective antimicrobial material to a target textile through a dryer sheet method would allow a consumer to apply such a desired treatment to textiles, such as clothing, linens, towels, even dry-clean only garments, and the like, through a simple, everyday procedure. To date, such a specific procedure incorporating such inorganic solid materials has not been accorded the industry by the prior art.
DESCRIPTION OF THE INVENTION
It is thus an object of the invention to provide a simple manner of effectively treating a fabric article with an antimicrobial inorganic solid treatment. Another object of the invention is to provide a non-yellowing antimicrobial treatment through the utilization of a simple in-home or industrial-level laundry tumble dryer method. Yet another object of the invention is to provide a metal-ion-treated textile that is non-yellowing, non-irritating to skin, and which provides antimicrobial properties, through a simple, in-home application method.
Accordingly, this invention encompasses a method of applying an antimicrobial finish to a recipient textile substrate comprising the steps of (a) providing a donor substrate over at least a portion of which a solid inorganic antimicrobial material has been applied; and (b) frictionally contacting said donor substrate with a recipient textile surface (preferably, though not necessarily within an operating tumble dryer machine). Also, this invention encompasses a donor substrate comprising a transferable treatment comprising at least one solid inorganic antimicrobial material, and optionally comprising at least one other material selected from the group consisting of at least one fabric softening material, at least one perfume, at least one fragrance, at least one antistatic compound, and optionally sunscreen, antioxidant, and any

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Antimicrobial transfer substrates and methods of use therewith does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Antimicrobial transfer substrates and methods of use therewith, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Antimicrobial transfer substrates and methods of use therewith will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2817703

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.