Antimicrobial agents

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Radical -xh acid – or anhydride – acid halide or salt thereof...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C562S621000, C562S622000, C562S623000, C514S645000, C564S300000

Reexamination Certificate

active

06716878

ABSTRACT:

This invention relates to a novel class of hydroxamic acid and N-formyl hydroxylamine derivatives having antibacterial activity, and to pharmaceutical and veterinary compositions comprising such compounds.
BACKGROUND TO THE INVENTION
In general, bacterial pathogens are classified as either Gram-positive or Gram-negative. Many antibacterial agents (including antibiotics) are specific against one or other Gram-class of pathogens. Antibacterial agents effective against both Gram-positive and Gram-negative pathogens are therefore generally regarded as having broad spectrum activity.
Many classes of antibacterial agents are known, including the penicillins and cephalosporins, tetracyclines, sulfonamides, monobactams, fluoroquinolones and quinolones, aminoglycosides, glycopeptides, macrolides, polymyxins, lincosamides, trimethoprim and chloramphenicol. The fundamental mechanisms of action of these antibacterial classes vary.
Bacterial resistance to many known antibacterials is a growing problem. Accordingly there is a continuing need in the art for alternative antibacterial agents, especially those which have mechanisms of action fundamentally different from the known classes.
Amongst the Gram-positive pathogens, such as Staphylococci, Streptococci, Mycobacteria and Enterococci, resistant strains have evolved/arisen which makes them particularly difficult to eradicate. Examples of such strains are methicillin resistant
Staphylococcus aureus
(MRSA), methicillin resistant coagulase negative Staphylococci (MRCNS), penicillin resistant
Streptococcus pneumoniae
and multiply resistant
Enterococcus faecium.
Pathogenic bacteria are often resistant to the aminoglycoside, &mgr;-lactam (penicillins and cephalosporins), and chloramphenicol types of antibiotic. This resistance involves the enzymatic inactivation of the antibiotic by hydrolysis or by formation of inactive derivatives. The &bgr;-lactam (penicillin and cephalosporin) family of antibiotics are characterised by the presence of a &bgr;-lactam ring structure. Resistance to this family of antibiotics in clinical isolates is most commonly due to the production of a “penicillinase” (&bgr;-lactamase) enzyme by the resistant bacterium which hydrolyses the &bgr;-lactam ring thus eliminating its antibacterial activity.
Recently there has been an emergence of vancomycin-resistant strains of enterococci (Woodford N. 1998 Glycopeptide-resistant enterococci: a decade of experience. Journal of Medical Microbiology. 47(10):849-62). Vancomycin-resistant enterococci are particularly hazardous in that they are frequent causes of hospital based infections and are inherently resistant to most antibiotics. Vancomycin works by binding to the terminal D-Ala-D-Ala residues of the cell wall peptidioglycan precursor. The high-level resistance to vancomycin is known as VanA and is conferred by a genes located on a transposable element which alter the terminal residues to D-Ala-D-lac thus reducing the affinity for vancomycin.
In view of the rapid emergence of multidrug-resistant bacteria, the development of antibacterial agents with novel modes of action that are effective against the growing number of resistant bacteria, particularly the vancomycin resistant enterococci and &bgr;-lactam antibiotic-resistant bacteria, such as methicillin-resistant
Staphylococcus aureus
, is of utmost importance.
BRIEF DESCRIPTION OF THE INVENTION
This invention is based on the finding that certain hydroxamic acid and N-formyl hydroxylamine derivatives have antibacterial activity, and makes available a new class of antibacterial agents. The inventors have found that the compounds with which this invention is concerned are antibacterial with respect to a range of Gram-positive and Gram-negative organisms.
Although it may be of interest to establish the mechanism of action of the compounds with which the invention is concerned, it is their ability to inhibit bacterial growth that makes them useful. However, it is presently believed that their antibacterial activity is due, at least in part, to intracellular inhibition of bacterial polypeptide deformylase (PDF; EC 3.5.1.31).
All ribosome-mediated synthesis of proteins starts with a methionine residue. In prokaryotes the methionyl moiety carried by the initiator tRNA is N-formylated prior to its incorporation into a polypeptide. Consequently, N-formylmethionine is always present at the N-terminus of a nascent bacterial polypeptide. However, most mature proteins do not retain the N-formyl group or the terminal methionine residue. Deformylation is required prior to methionine removal, since methionine aminopeptidase does not recognise peptides with an N-terminal formylmethionine residue (Solbiati et al., J. Mol. Biol. 290:607-614, 1999). Deformylation is, therefore, a crucial step in bacterial protein biosynthesis and the enzyme responsible, PDF, is essential for normal bacterial growth. Although the gene encoding PDF (def) is present in all pathogenic bacteria for which sequences are known (Meinnel et al., J. Mol. Biol, 266:939-49, 1997), it has no eukaryotic counterpart, making it an attractive target for antibacterial chemotherapy.
The isolation and characterisation of PDF has been facilitated by an understanding of the importance of the metal ion in the active site (Groche et al., Biophys. Biochem. Res. Commun., 246:324-6, 1998). The Fe
2+
form is highly active in vivo but is unstable when isolated due to oxidative degradation (Rajagopalan et al., J. Biol. Chem. 273:22305-10, 1998). The Ni
2+
form of the enzyme has specific activity comparable with the ferrous enzyme but is oxygen-insensitive (Ragusa et al., J. Mol. Biol. 1998, 280:515-23, 1998). The Zn
2+
enzyme is also stable but is almost devoid of catalytic activity (Rajagopalan et al., J. Am. Chem. Soc. 119:12418-12419, 1997).
Several X-ray crystal structures and NMR structures of
E. coli
PDF, with or without bound inhibitors, have been published (Chan et al., Biochemistry 36:13904-9, 1997; Becker et al., Nature Struct. Boil. 5:1053-8, 1998; Becker et al., J. Biol. Chem. 273:11413-6, 1998; Hao et al., Biochemistry, 38:4712-9, 1999; Dardel et al., J. Mol. Biol. 280:501-13, 1998; O'Connell et al., J. Biomol. NMR, 13:311-24, 1999), indicating similarities in active site geometry to metalloproteinases such as thermolysin and the metzincins.
Recently the substrate specificity of PDF has been extensively studied (Ragusa et al., J. Mol. Biol. 289:1445-57, 1999; Hu et al., Biochemistry 38:643-50, 1999; Meinnel et al., Biochemistry, 38:4287-95, 1999). These authors conclude that an unbranched hydrophobic chain is preferred at P1′, while a wide variety of P2′ substituents are acceptable and an aromatic substituent may be advantageous at the P3′ position. There have also been reports that small peptidic compounds containing an H-phosphonate (Hu et al., Bioorg. Med. Chem. Lett., 8:2479-82, 1998) or thiol (Meinnet et al., Biochemistry, 38:4287-95, 1999) metal binding group are micromolar inhibitors of PDF. Peptide aldehydes such as calpeptin (N-Cbz-Leu-norteucinal) have also been shown to inhibit PDF (Durand et al., Arch. Biochem. Biophys., 367:297-302, 1999). However, the identity of the metal binding group and its spacing from the rest of the molecule (“recognition fragment”) has not been studied extensively. Furthermore, non-peptidic PDF inhibitors, which may be desirable from the point of view of bacterial cell wall permeability or oral bioavailability in the host species, have not been identified.
Recently it has been reported that PDF is present in eukaryotic parasites such as
Plasmodium falciparum
(Ferreira et al, Parasitology Today, vol 16, no. 4, 2000). Those authors also found evidence for the presence of PDF in other parasites of humans, such as the kinetoplastid protozoan parasites
Trypanosoma brucei
and
Leishmania major
. Based on these findings, it is anticipated that the compounds with which this invention is concerned have antiprotozoal activity, and are useful in the treatment of malaria and other protozoal diseases.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Antimicrobial agents does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Antimicrobial agents, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Antimicrobial agents will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3192785

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.