Chemistry: analytical and immunological testing – Involving an insoluble carrier for immobilizing immunochemicals
Reexamination Certificate
1997-08-12
2001-01-23
Housel, James C. (Department: 1641)
Chemistry: analytical and immunological testing
Involving an insoluble carrier for immobilizing immunochemicals
C436S532000, C436S533000
Reexamination Certificate
active
06177282
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to the preparation of an immobilized antigen and its use in immunoassays as well and other biomedical applications.
BACKGROUND TO THE INVENTION
Immunoassays have been used for decades as a means to assay for the qualitative and quantitative presence of antigens or antibodies in a sample. Among the most common immunoassay techniques include a solid phase matrix to which either an antigen or antibody is bound. While numerous methods for attaching the antigen or antibody to the solid phase are known and several widely used, the attachment technique remains an important step in the preparation of an immunoassay. Indeed, the immobilization of an antibody or antigen to the solid phase is usually one of the first steps in preparing an immunoassay.
Swan, et al. (BSI Corporation), U.S. Pat. No. 5,414,075, disclose chemically coupling a target molecule, such as phospholipids, to a plastic support, such as polystyrene, using a multi-functional chemical coupling agent.
Sharma, U.S. Pat. No. 4,360,358, discloses the formation of an immunologically active solid phase by incorporating a low molecular reagent, such as a hapten, into a material which forms a solid polymer. This polymer is itself coated on a solid phase. The base solid phase may be polystyrene. The material forming a solid polymer includes a number of gels and the like.
Sterhan et al. (Biostar Medical Product, Inc.), World Patent 90/10227, disclose the absorption of cardiolipin, phospholipids and other materials on a solid support, such as a plastic well plate, which was previously coated with methylated bovine serum albumin.
Shah et al. (Baxter Diagnostics Inc.), World Patent 91/10138, disclose either the passive absorption or the chemical coupling of cardiolipin, phosphatidylcholine and/or cholesterol to polystyrene plates for the purposes of an ELISA (enzyme-linked immunosorbent assay). Note that all of the coating and coupling occurs after the plastic plate has been formed.
Matsuura, et al. (Yamasa Shoyu Kabushiki Kaisha), U.S. Pat. No. 5,506,110, disclose binding various phospholipids on a polystyrene well plate for the purposes of an ELISA. The antigens are passively absorbed on the solid phase. Note the assay's ability to distinguish between various antiphospholipid antibodies.
Lostia, et al. (Snam Progetti S.p.A.), U.S. Pat. No. 4,031,201, disclose the preparation of fibers incorporating antibodies or antigens. These fibers are used for a number of purposes including as a solid phase in various immunoassays. The active substance, which may be a hapten, is mixed with a polymer and the mixture is then spun through a coagulation bath to produce the solid phase in the form of fibers. Note that the polymer may be polystyrene. The fibers are porous and contain microcavities.
Peters, Jr. et al. (SmithKline Diagnostics, Inc.), U.S. Pat. No. 5,013,669, disclose an immunoassay wherein the antigen or hapten is chemically coupled to a polymer which forms a solid material. This material is coated on another solid support. The polymer is reversibly water-soluble and is chemically bound to the antigen/hapten.
Sutton, (Eastman Kodak Company), U.S. Pat. No. 5,234,841, discloses the coating of a solid phase, such as polystyrene with an antigen/hapten for use in an immunoassay. The biologically active material is dissolved in a solvent and then coated on the solid phase.
Bonacker, et al. (Behringwerke Aktiengesellschaft), U.S. Pat. No. 4,118,349, disclose immunoassays wherein the solid phase immobilized antibody or antigen is chemically bound to a polystyrene solid phase. The antibody or antigen is chemically coupled to the polystyrene carrier through a chemical coupling compound.
Yabusaki (Hana Biologies, Inc.), U.S. Pat. No. 4,459,362, discloses an immunoassay for antibodies to various phospholipids using phospholipids in suspension.
Hartdegen, et al. (W. R. Grace & Co.), U.S. Pat. No. 4,195,127, disclose immobilizing proteins, which include antibodies or antigens, in a polyurethane foam product. The antibody or antigen is mixed with a monomer or prepolymer and reacted thereto. The chemical conjugate of antigen and prepolymer is then polymerized to form the polyurethane foam. This solid phase can then be used for a number of uses. The antibody or antigen is chemically coupled to the polymer molecule.
Nowinski, et al. (Genetic Systems Corporation), U.S. Pat. Nos. 4,609,707 and 4,752,638, disclose the formation of a polymer-antibody or polymer-antigen solid material by chemically reacting the antibody or antigen to a monomer directly or indirectly to form a monomer/antibody or antigen conjugate, followed by polymerizing of the monomer. The material may then be used as a solid phase in immunoassays. The solid phase may take any form.
Johnson, et al. (Miles Inc.), U.S. Pat. No. 4,822,747, disclose immobilizing a hapten reagent on a solid phase and using it in an immunoassay. The reference teaches that the hapten is to be chemically coupled to reactive moieties on the outer surface of the polymer. Interesting, Johnson, et al. emphasizes the need to chemically bind the hapten to the solid phase as non-specifically bound haptens may be washed or slowly leached away from the solid phase.
Walter, (Miles Laboratories, Inc.), U.S. Pat. No. 4,390,343, discloses dipstick-type analytical elements where the antibody or antigen/hapten are incorporated into a gel, such as agarose, gelatin or PVP.
Immunoassays for detecting syphilis have been in widespread use for decades. Every unit of blood and patients suspected of having any sexually transmitted disease are routinely screened for syphilis by immunoassay. The techniques for screening blood for antibodies to syphilis have included VDRL (Venereal Disease Research Laboratory), RPR (rapid plasma regain), complement fixation, treponemal immobilization/adherence, FTA (fluorescent treponemal antibody) ELISA and possibly a number of other immunoassay formats also. The earliest immunoassay for phospholipids (PL) is the Wassermann reaction (ca. 1905) which is a complement fixation assay.
All immunoassay methods are dependant on antibody binding to the antigen. The antigen for syphilis serology has historically been an alcohol extract from beef heart mixed with cholesterol. The antigen (cardiolipin) was typically adsorbed onto carbon particles as a solid phase. While the antigen is not perfect, it has demonstrated its effectiveness at protecting the blood supply.
A number of other diseases also have been associated with or identified by detecting antibodies to the same PL antigens or to phospholipid binding proteins. Examples include patients with systemic lupus erythematosus (SLE) and a subset of patients identified as having anti-phospholipid syndrome. Clinical findings include recurrent venous thrombosis, recurrent arterial thrombosis, recurrent spontaneous abortion, thrombocytopenia, chorea, epilepsy, livedo and idiopathic pulmonary hypertension. Other rheumatological and collagenous diseases also present as characteristic antibodies to PL in the patient's serum. In the field of human organ transplantation, primary non-function of the organ also may appear associated with the presence of anti-phospholipid antibody (aPA). Wagenknecht et al,
Human Immunology
, 49, p. 27 (1996). Accordingly, there is a great need and numerous applications for a standardized immunoassay for aPA.
ELISAs has been in use for about 25 years to detect small amounts of antigenic substances. Today, many ELISA systems use plastic (polystyrene) 96-well plates (Microtiter plates) which have been adapted and/or modified to provide optimal binding of the antigenic substance to which antibodies have been produced. Beginning in the 1980's, the ELISA was selected for use for the detection of antibodies to antigens composed of PL and/or PL-binding plasma proteins.
The term “anti-phospholipid antibody” (aPA) refers to the conventional usage of that term in which many antibodies to PL are actually antibodies to plasma proteins which bind to phospholipids. Nonetheless, PL are co
Antonelli Terry Stout & Kraus LLP
Housel James C.
Portner Ginny Allen
LandOfFree
Antigens embedded in thermoplastic does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Antigens embedded in thermoplastic, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Antigens embedded in thermoplastic will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2499050