Antigenic protein originating in malassezia

Drug – bio-affecting and body treating compositions – Antigen – epitope – or other immunospecific immunoeffector

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S185100, C424S191100, C424S265100, C424S275100, C424S276100, C424S278100, C530S300000, C530S324000, C530S325000, C530S326000, C530S327000, C530S328000, C530S329000, C530S350000, C530S361000, C530S858000

Reexamination Certificate

active

06432407

ABSTRACT:

This application is the national phase under 35 U.S.C. §371 of prior PCT International Application No., PCT/JP96/03602, which has an International filing date of Dec. 10, 1996, which designated the United States of America, the entire contents of which are hereby incorporated by reference.
TECHNICAL FIELD
The present invention relates to a novel antigenic protein which is isolated and purified from Malassezia fungi, useful for diagnosis, treatment, and prophylaxis for allergoses and infectious diseases of which causative microorganisms are Malassezia fungi, and to antigenic fragments thereof, an antibody against the antigenic protein or antigenic fragments thereof, and the like.
Further, the present invention relates to a recombinant Malassezia antigenic protein, a gene encoding the antigenic protein, and also to an epitope of the protein, and the like.
BACKGROUND ART
As a result of sensitization by the causative antigen for the diseases, in many of the allergoses, an antigen (allergen)-specific IgE antibody (reagin antibody) is produced in sera and tissue. Upon re-exposure to the same antigen, IgE bound to the mast cells or basophiles and the specific allergen become coupled together to cause IgE crosslink on the cell surface, resulting in physiological effects due to the IgE-antigen interaction. Such physiological effects include the release of histamine, serotonin, heparin, eosinophilic chemotactic factor, or various leukotrienes, whereby persisting constriction of bronchial smooth muscle is caused. These released substances act as chemical mediators to induce allergic symptoms due to a coupling of IgE and a particular allergen. The effects of an allergen manifest themselves via these symptoms, and such effects can occur systemically or locally, depending on the route of antigen invasion in the body and the pattern of IgE sedimentation on mast cells or basophiles. Local symptoms generally occur on the epithelial surface at the position of allergen invasion in the body. Systemic effects are consequences of IgE-basophile response to the antigen in the blood vessels, which are typically exemplified by anaphylactic shock. The helper T (Th) cell plays a key role in the series of reactions. Among the various cytokines produced by Th cells activated by antigen stimulation, IL4 promotes IgE production.
A wide variety of substances induce allergic symptoms in humans. To date, allergens have been viewed as an assembly of a large number of substances represented by pollens or house dusts. As a result of recent advances in separation and purification techniques and methods for evaluating allergen activity, it has been clearly obvious that the allergen comprises a single substance or several kinds of principal substances. In particular, a rapid progress in research into allergens of
Cryptomeria japonica
(Japanese cedar) pollen, ticks, cats, and the like has been made, and major allergens, such as Cry j 1 and Cry j 2 have been isolated from
Cryptomeria japonica
pollen; Der f 1, Der f 2, and Der f 3 have been isolated from ticks; and Fel d 1 has been isolated from cats. Furthermore, genes encoding these allergenic proteins have also been isolated, thereby making it possible to prepare pure allergenic proteins in large amounts by genetic engineering techniques.
In the diagnosis of allergoses, it is necessary to first identify the antigen of which the microorganisms are causative, and in order to accomplish this purpose, over 100 kinds of commercially available antigen extracts, and in some cases, those prepared in-house, are first subjected to intracutaneous tests using suspected antigen extracts. In the case where an antigen of which is a very likelihood of being the causative antigen is found, the antigen can be specifically identified by assaying serum IgE antibody titration by RAST method and the like, provocative tests, or histamine release tests using whole blood or lymphocytes. Because these antigen extracts do not have their potency well titrated, however, attention should be marked to the risk of anaphylactogenesis upon use. Usable therapies for allergoses include antihistaminics, steroidal anti-inflammatory drugs, and mediator release suppressors, and the therapy of hyposensitization using a diagnostically specified antigen serves excellently. It should be noted, however, that the currently available method of therapy of hyposensitization requires an antigen solution to be intracutaneously administered little by little once or twice each week for three to four months over which period the starting dose is escalated to a maintenance dose, which is then maintained for one to three years. If dose escalation is easy, it can be expected that excellent therapeutic effects can be obtained. However, grave side reactions can occur because of the above uncertain potency of the antigen used, and because of the presence of various impurity substances therein, thereby greatly limiting its use of the antigen.
Fungi belonging to the genus Malassezia (hereinafter abbreviated as M.) are known to include
M. furfur
(also known as
Pityrosporum ovale
or
Pityrosporum orbiculare
),
M. pachydermatis, M. sympodialis
, and the like. Malassezia is reportedly commonly present on the body surfaces of various animals and on those of humans. Its pathogenicity and role in allergoses have long been studied. Regarding pathogenicity, Malassezia is suspected of being causative microorganisms for dermatitis, tinea versicolor, folliculitis, dandruff, and other conditions. It is also suspected of being associated with allergoses, such as atopic dermatitis, and there is a great chance that it is involved in these diseases as a causative microorganism.
Currently, antigen extracts from Malassezia are commercially available. These extracts are unpurified or partially purified products obtained from cultures of
M. furfur
, and are thus considered complex mixtures comprising proteins, sugars, and lipids.
Conventionally, a large number of allergenic proteins from Malassezia have been reported to be contained in such antigen extracts, including 87, 76, 67, 45, 37, 28, 25, 14, 13 kDa IgE-binding proteins, which are detected by immunoblotting using IgE antibodies in sera of patients after a crude extract from a Malassezia fungus is separated by SDS-polyacrylamide gel electrophoresis (PAGE) (Siv Johansson et al.,
Acta Derm. Venereol
., 71, 11-16, 1991; E. Jensen-Jarolim et al.,
J. Allergy Clin. Immunol
., 89, 44-51, 1992; Zargari et al.,
Allergy
, 49, 50-56, 1994). Thus, since the proteins produced by the Malassezia fungi are beyond a wide variety of proteins, simple separation by SDS-PAGE alone is unsatisfactory, and it cannot be thought that a single protein band in SDS-PAGE which is conventionally reported represents a homogenous protein. In other words, because a plurality of proteins sharing the same protein band in SDS-PAGE are usually present, an IgE-binding protein, even if a single protein band is shown, must be separated from many other proteins contained in the band, which in turn necessitates combining with another effective separation method. Furthermore, in order to be useful for a diagnostic or therapeutic purpose, it is necessary to isolate an antigenic protein and clarify its antigenicity using a number of sera from patients, to identify it as the major allergen, and to establish a method for producing it for supplying the desired produce with demonstrated protein chemical quality. For these reasons, a homogenous and single antigenic protein must be isolated by repeating separation by various chromatographies and assay of the antigen activity. The protein finally obtained needs to be confirmed as having homogeneity in ion exchange chromatography and homogeneity in isoelectric electrophoresis, as well as that in SDS-PAGE.
According to the above-mentioned various reports, however, such substances observed in SDS-PAGE are dealt with as if they each represent a single IgE-binding protein. Actually, however, no one have yet been successful to isolate and purify them, and there have never been discussed

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Antigenic protein originating in malassezia does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Antigenic protein originating in malassezia, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Antigenic protein originating in malassezia will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2914352

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.