Data processing: software development – installation – and managem – Software program development tool – Translation of code
Reexamination Certificate
2000-09-21
2004-06-01
Das, Chameli Chaudhuri (Department: 2122)
Data processing: software development, installation, and managem
Software program development tool
Translation of code
C717S155000, C717S152000, C717S136000, C717S140000, C717S151000, C709S241000, C712S203000, C712S209000, C712S212000
Reexamination Certificate
active
06745384
ABSTRACT:
TECHNICAL FIELD
The present invention relates generally to a computer method and system for generating a computer program and, more specifically, to a computer method and system for optimizing a computer program.
BACKGROUND OF THE INVENTION
Computer programs are generally written in a high-level programming language (e.g., Pascal and C). A compiler is then used to translate the instructions of the high-level programming language into machine instructions, which can be executed by a computer. The use of high-level programming languages results in dramatically increased program development productivity as compared to programming in either an assembly language or machine language. The increase in program development productivity results from allowing a programmer to use high-level computational constructs rather than low-level computational constructs. Since certain high-level computational constructs (e.g., Fast Fourier Transform) may translate into hundreds of low-level computational constructs, some of the increase in productivity arises directly from the ratio of high-level to low-level computational constructs. A programmer can more quickly specify one high-level computational construct rather than hundreds of low-level computational constructs. Also, a programmer can typically debug a computer program expressed with high-level computational constructs more quickly than the equivalent computer program expressed with low-level computational constructs. The productivity also increases because the intent of the programmer is generally more readily apparent when the computer program is expressed with high-level computational constructs. The identification of the programmer's intent is especially useful to another programmer who later modifies the computer program.
Unfortunately, the code compiled from a computer program developed in a high-level programming language can be much less efficient than the code generated from an equivalent computer program expressed in a low-level programming language. The efficiency of code manually written with low-level computational constructs may result, for example, because some or many of the low-level operations compiled from different high-level operations may be shared so that the compiled low-level operations can be rewoven into different sequences of low-level operations to implement the different high-level operations. Such code reweaving and sharing is, however, very difficult to automate once the high-level operations are compiled into segments of low-level operations. Some of the analyses required to accomplish such reweaving can require deep inferences about the low-level operations that for large segments of compiled code in the context of large programs could take years to complete using an automated reasoning system. On the other hand, a human programmer, given enough time, can always develop code using low-level computational constructs to be as efficient as code compiled from a computer program developed in a high-level programming language. Moreover, the programmer may be able to optimize a computer program developed using low-level computational constructs in ways that are not currently available to a compiler or a post-compilation optimizer. For example, current compilation techniques often generate highly inefficient code to access high-level composite data structures, such as a matrix. Operations on a matrix typically require iterative code (i.e., looping code) that selects and processes each one of the elements of the matrix in each step of the iteration. If several high-level operations on a matrix are combined into single statement and each operation requires selecting and processing each element, the compiled code is likely to include multiple “for” loops that each include a nested “for” loops. For example, to double the value of each element of a matrix and then add the resulting values to the values of the elements of another matrix, the programmer may specify the following statement using high-level computational constructs:
A=B
+(2
*C
)
where A, B, and C are matrices. When a compiler generates code for this high-level statement, the compiler may generate nested “for” loops to select the element at each row and each column of the C matrix, to multiply the value of the selected element by 2, and to store the doubled values in a temporary matrix. The compiler also generates nested “for” loops to select the element at each row and column of the temporary matrix, to add that value to the value of the corresponding element of the B matrix and to store the sum in another temporary matrix. The compiler generates a third set of nested “for” loops to select the element at each row and column of the temporary matrix and to store the value of that element into the A matrix. The resulting code may be:
for i=1,m
for j=1,n
temp[i,j]=2*C[i,j]
for i=1,m
for j=1,n
temp[i,j]=B[i,j]+temp[i,j]
for i=1,m
for j=1,n
A[i,j]=temp[i,j]
A programmer, however, using a low-level language would combine these three sets of nested “for” loops into a single set of nested “for” loops. The resulting programmer optimized code would be:
for i=1,m
for j=1,n
A[i,j]=B[i,j]+(2*C[i,j])
Although program optimizers have been developed that attempt to coalesce loops, the optimization techniques generally do a poor job in identifying those portions of the compiled code that lend themselves to coalescing.
If a programming language has high-level computational constructs built into the language, then various optimization techniques can be also built in. For example, since the computational construct “matrix,” which is a composite of low-level computational constructs such as integers and integer operations, is built directly into the programming language APL, the loop optimizations described above are easily accomplished by APL. APL compilers can and do use the built-in knowledge of the semantics of matrices and their operations to anticipate the looping inefficiencies and compile directly to the optimized code for known patterns and combinations of high-level operators and high-level composite operands. If, however, such high-level computational constructs are not built into an existing programming language, then they need to be added as extensions to the existing programming language or defined by the programmer. In both cases, the extensions and their optimizations cannot be added to the existing language framework by simply defining the new constructs and their optimizations in terms of existing constructs. These extensions and their optimizations cannot be added primarily because conventional programming languages provide no constructs for expressing how to reweave definitions of high-level operators and data structures for optimizable combinations of those operators and data structures. Of course, the programmer can define to the compiler high-level composite data structures like images, for example, in terms of matrix-like data structures composed with other data structures (e.g., C like structs) that are native to the target compiler (e.g., C). Further, the programmer can define how each individual composite data structure and their operators are to be compiled individually (e.g., the “*” operator used in the context of “(constant*matrix)” type expression should compile into two nested loops over the matrix). However, the programmer has no way to tell the compiler how to reweave the code of several such individual definitions composed together in an expression in order to share the low-level operations for the particular composition.
It would be desirable to have a general method for a programmer to define such optimization rules for reweaving the definitions of high-level (i.e., composite) data structures and their operators when the multiple high-level operators and their high-level data structures are used together in optimizable patterns or com
Das Chameli Chaudhuri
Ipsolon LLP
Microsoft Corporation
LandOfFree
Anticipatory optimization with composite folding does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Anticipatory optimization with composite folding, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Anticipatory optimization with composite folding will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3326166