Antibody variants

Chemistry: natural resins or derivatives; peptides or proteins; – Proteins – i.e. – more than 100 amino acid residues – Blood proteins or globulins – e.g. – proteoglycans – platelet...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C530S388850

Reexamination Certificate

active

06632926

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to antibody variants. In particular, antibody variants of parent antibodies are disclosed which have one or more amino acids inserted in a hypervariable region of the parent antibody and a binding affinity for a target antigen which is at least about two fold stronger than the binding affinity of the parent antibody for the antigen.
2. Description of Related Art
Antibodies are proteins, which exhibit binding specificity to a specific antigen. Native antibodies are usually heterotetrameric glycoproteins of about 150,000 daltons, composed of two identical light (L) chains and two identical heavy (H) chains. Each light chain is linked to a heavy chain by one covalent disulfide bond, while the number of disulfide linkages varies between the heavy chains of different immunoglobulin isotypes. Each heavy and light chain also has regularly spaced intrachain disulfide bridges. Each heavy chain has at one end a variable domain (V
H
) followed by a number of constant domains. Each light chain has a variable domain at one end (V
L
) and a constant domain at its other end; the constant domain of the light chain is aligned with the first constant domain of the heavy chain, and the light chain variable domain is aligned with the variable domain of the heavy chain. Particular amino acid residues are believed to form an interface between the light and heavy chain variable domains.
The term “variable” refers to the fact that certain portions of the variable domains differ extensively in sequence among antibodies and are responsible for the binding specificity of each particular antibody for its particular antigen. However, the variability is not evenly distributed through the variable domains of antibodies. It is concentrated in three segments called Complementarity Determining Regions (CDRs) both in the light chain and the heavy chain variable domains. The more highly conserved portions of the variable domains are called the framework regions (FR). The variable domains of native heavy and light chains each comprise four FR regions, largely adopting a &bgr;-sheet configuration, connected by three CDRs, which form loops connecting, and in some cases forming part of, the &bgr;-sheet structure. The CDRs in each chain are held together in close proximity by the FR regions and, with the CDRs from the other chain, contribute to the formation of the antigen binding site of antibodies (see Kabat et al.,
Sequences of Proteins of Immunological Interest
, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, MD. (1991)).
The constant domains are not involved directly in binding an antibody to an antigen, but exhibit various effector functions. Depending on the amino acid sequence of the constant region of their heavy chains, antibodies or immunoglobulins can be assigned to different classes. There are five major classes of immunoglobulins: IgA, IgD, IgE, IgG and IgM, and several of these may be further divided into subclasses (isotypes), e.g. IgG1, IgG2, IgG3, and IgG4; IgA1 and IgA2. The heavy chain constant regions that correspond to the different classes of immunoglobulins are called a, &agr;, &dgr;, &egr;, &ggr;, and &mgr;, respectively. Of the various human immunoglobulin classes, only human IgG1, IgG2, IgG3 and IgM are known to activate complement.
In vivo, affinity maturation of antibodies is driven by antigen selection of higher affinity antibody variants which are made primarily by somatic hypermutagenesis. A “repertoire shift”also often occurs in which the predominant germline genes of the secondary or tertiary response are seen to differ from those of the primary or secondary response.
Various research groups have attempted to mimic the affinity maturation process of the immune system, by introducing mutations into antibody genes in vitro and using affinity selection to isolate mutants with improved affinity. Such mutant antibodies can be displayed on the surface of filamentous bacteriophage and antibodies can be selected by their affinity for antigen or by their kinetics of dissociation (off-rate) from antigen. Hawkins et al.
J. Mol. Biol
. 226:889-896 (1992). CDR walking mutagenesis has been employed to affinity mature human antibodies which bind the human envelope glycoprotein gp120 of human immunodeficiency virus type 1 (HIV-1) (Barbas III et al.
PNAS
(
USA
) 91: 3809-3813 (1994); and Yang et al.
J. Mol. Biol
. 254:392-403 (1995)); and an anti-c-erbB-2 single chain Fv fragment (Schier et al.
J. Mol. Biol
. 263:551567 (1996)). Antibody chain shuffling and CDR mutagenesis were used to affinity mature a high-affinity human antibody directed against the third hypervariable loop of HIV (Thompson et al.
J. Mol. Biol
. 256:77-88 (1996)). Balint and Larrick Gene 137:109-118 (1993) describe a technique they coin “parsimonious mutagenesis” which involves computer-assisted oligodeoxyribonucleotide-directed scanning mutagenesis whereby all three CDRs of a variable region gene are simultaneously and thoroughly searched for improved variants. Wu et al. affinity matured an &agr;v&bgr;3-specific humanized antibody using an initial limited mutagenesis strategy in which every position of all six CDRs was mutated followed by the expression and screening of a combinatorial library including the highest affinity mutants (Wu et al.
PNAS
(
USA
) 95: 6037-6-42 (1998)). Phage antibodies are reviewed in Chiswell and McCafferty
TIBTECH
10:80-84 (1992); and
Rader and Barbas III Current Opinion in Biotech
. 8:503-508 (1997). In each case where mutant antibodies with improved affinity compared to a parent antibody are reported in the above references, the mutant antibody has amino acid substitutions in a CDR.
SUMMARY OF THE INVENTION
Unlike the affinity matured antibodies of the above references, the present invention provides an antibody variant of a parent antibody, which antibody variant comprises an amino acid insertion in or adjacent to a hypervariable region of the parent antibody and has a binding affinity for a target antigen which is at least about two fold stronger than the binding affinity of the parent antibody for the antigen.
The invention further provides an antibody variant comprising a heavy chain variable domain, wherein CDR H3 of the heavy chain variable domain comprises the amino acid sequence of CDR H3 of a variant selected from the group consisting of Y0239-19 (SEQ ID NO:85); Y0239-8 (SEQ ID NO:53); Y0240-1 (SEQ ID NO:86); Y0239-12 (SEQ ID NO:78); Y0239-9 (SEQ ID NO:54); and Y0261-6 (SEQ ID NO:89). These CDR H3 sequences may, for example, be provided in the heavy chain variable domain sequence of SEQ ID NO: 98 or 99; see FIG.
1
B). Preferably, the antibody variant further comprises a light chain variable domain and binds VEGF antigen with stronger binding affinity than Y0192 (see
FIGS. 1A and 1B
; SEQ ID NO's 95 and 96).
The invention further provides a method for producing an antibody variant comprising introducing an amino acid residue in or adjacent to a hypervariable region of a parent antibody, wherein the antibody variant has a binding affinity for a target antigen which is at least about two fold stronger than the binding affinity of the parent antibody for said antigen.
Additionally, the invention provides a method for making an antibody variant, comprising the steps of:
(a) identifying potential amino acid interactions between a hypervariable region of a parent antibody and a target antigen;
(b) preparing a variant of the parent antibody comprising introducing an amino acid residue in or adjacent to the hypervariable region of the parent antibody, wherein the introduced amino acid residue contributes to the potential amino acid interactions in (a); and
(c) selecting an antibody variant prepared as in (b) which has a stronger binding affinity for the antigen than the parent antibody.
Various forms of the antibody variant are contemplated herein. For example, the antibody variant may be a full length antibody (e.g. having a human immunoglobulin constant region) or an a

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Antibody variants does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Antibody variants, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Antibody variants will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3161540

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.