Antibodies to epithelium-derived T-cell factor

Chemistry: natural resins or derivatives; peptides or proteins; – Proteins – i.e. – more than 100 amino acid residues – Blood proteins or globulins – e.g. – proteoglycans – platelet...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C530S387900, C530S388100, C530S388150, C530S389100, C530S389200, C424S130100, C424S134100, C424S139100, C424S141100, C424S142100, C424S145100, C424S158100, C435S325000, C435S326000, C435S328000, C435S331000, C435S335000, C435S346000, C435S352000

Reexamination Certificate

active

06184359

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to a mammalian epithelium-derived T-cell factor (“ETF”) polypeptide. It more particularly relates to isolated mammalian ETF polypeptide sequences and derivatives thereof, compositions containing mammalian ETF that induce T cell proliferation and differentiation, compositions containing mammalian ETF that induce B cell proliferation and secretion, compositions containing mammalian ETF that augment destruction of tumor cells or viral-infected cells, compositions containing mammalian ETF that augment anti-infectious disease immunity, and compositions containing mammalian ETF for preventing radio- and chemotherapy-induced toxicity.
BACKGROUND OF THE INVENTION
T-cells, also known as T-lymphocytes, are a class of immune effector cells. In peripheral tissues, T-cells can be divided into two broad groups based on their mutually exclusive expression of CD4 and CD8 cell surface molecules. Typical CD8
+
T-cells become cytotoxic T-cells after activation and destroy antigen bearing target cells through direct cell contact. Activated CD4
+
T-cells generally provide positive signals, for example, “helper” function for B cells (that engages to antibody-forming cells) and, therefore, are called helper T-cells.
Six T-cell growth factors have previously been identified: Interleukin (IL) -2, -4, -7, -9, -12 and cofactor IL-10. Each of these will be discussed in turn below. Briefly, IL-2's open reading frame codes for a 15 kDa, 153-amino acid polypeptide. IL-2 is produced by certain T-cells and by large granular lymphocytes. IL-2 was originally discovered as a factor that would support long-term growth of human T-cells. In addition to T-cell growth, its effects include activation of natural killer (NK) cells and lymphokine-activated killer (LAK) cells as well as cytotoxic T-cells (“CTL”), macrophages and promotion of B-cell growth.
IL-4 is a 15-20 kDa protein produced by activated T-cells, bone marrow stromal cells, and mast cells. The IL-4 open reading frame codes for 140-amino acid murine IL-4 and 153-amino acid human IL-4. Originally, IL-4 was defined as a factor that activated B-cell growth and differentiation. Its effects also include macrophage activation and induction of class II MHC molecules, growth of some T-cell and mast cell lines, proliferation and CTL generation from human peripheral blood T-cells and enhancement of immunoglobulin production by B-cells. IL-4 also acts as a cofactor in growth of hematopoietic cells from stem cells, and plays an important role in the down-regulation of IL-2 induced NK cell and LAK cell activities. Human IL-4 is not active on murine cells.
IL-7 is a 20-25 kDa, 177 amino acid polypeptide produced by bone marrow and thymic stromal cells. Although it was originally described as a pre-B-cell growth factor, IL-7 supports the growth of pro-B-cells as well as pre-B-cells. IL-7 also induces proliferation and CTL generation from human peripheral blood T-cells, IL-2 receptor expression, IL-2 production, and proliferation in CD4
+
and CD8
+
cells. IL-7 also synergizes with IL-2 and increases thymic T-cell proliferation and induces proliferation of CD4

and CD8

thymocytes.
IL-9 is a 30-40 kDa, 144 amino acid polypeptide produced by activated T-lymphocytes. IL-9 was first identified as a helper T-cell growth factor. IL-9 stimulates erythroid development and enhances IL-3 induced proliferation of bone marrow-derived mast cells. It also modulates IgE and IgG production by B-cells in the presence of IL-4. Murine IL-9 is active on human cells, whereas human IL-9 does not act on murine cells.
Human IL-10 is a 16-20 kDa, 178-amino acid polypeptide produced by macrophages and TH2 but not TH1 T-helper cells. Like IL-2, IL-4 and IL-7, IL-10 has several different biological activities. IL-10 was discovered on the basis of its ability to inhibit cytokine production by activated T-cells. Both human and murine IL-10 are growth-stimulatory cofactors for thymocytes and T-cells in combination with IL-7 or IL-2 plus IL-4. IL-10 stimulates mast cell viability and growth in combination with IL-4 or IL-3 plus IL-4. IL-10 also induces the IgG secretion and expression of MHC class II molecules on B-cells and increases their viability in culture.
IL-12 is constitutive or induced by phorbol ester and calcium ionophore in lymphoblastoid cell lines and is produced by LPS stimulated macrophages. IL-12 has a molecular weight of 70 kDa and an unusual heterodimeric structure, being formed of two disulfide-bonded glycoproteins. The larger of the two glycoprotein subunits is a 40 kDa, 328-amino acid polypeptide. The smaller glycoprotein subunit is a 35 kDa, 253-amino acid polypeptide. Both glycoprotein subunits are necessary for bioactivity. IL-12 induces the proliferation of activated T-cells of both the CD4
+
and CD8
+
subsets independently of IL-2. IL-12 also activates NK-cell-mediated cytotoxicity and synergizes with IL-2 to generate LAK cells. Unlike IL-2 and IL-7, but similar to IL-4, IL-12 causes little or no proliferation of resting peripheral blood mononuclear cells.
The present invention provides a new, previously unidentified T-cell growth factor, designated “Epithelium-derived T-cell Factor” (“ETF”), and further provides other related advantages.
SUMMARY OF THE INVENTION
As noted above, the present invention provides novel T-cell growth factors, hereinafter referred to as “Epithelium-derived T-cell Factors” (“ETF”). Briefly, within one aspect of the present invention isolated nucleic acid sequences are provided which encode biologically active ETF. Within one embodiment, such nucleic acid sequences may be selected from the group consisting of: (a) cDNA (both coding and non-coding strands) which encodes a mammalian ETF gene, (b) nucleic acid sequences which hybridize to the cDNA of (a) under moderate stringency conditions and which encode a biologically active ETF; and (c) nucleic acid sequence that are degenerate as a result of the genetic code to the nucleic acid sequences of (a) or (b), and which encode biologically active ETF. Within further embodiments, isolated nucleic acid sequences are provided comprising nucleotides
145
through
486
of either SEQ ID NOS
1
or
4
. Also provided are expression vectors capable of directing the expression of any of the above-described nucleic acid sequences, host cells transformed or transfected with such expression vectors, as well as processes for preparing ETF, comprising the steps of culturing one or the above-described host cells under conditions which promote expression of ETF, and recovering ETF from the culture.
Within another aspect of the present invention, isolated biologically active ETF polypeptides are provided, wherein the ETF polypeptide is selected from the group consisting of: (a) a polypeptide having the amino acid sequence of SEQ ID NO
3
; (b) a polypeptide having the amino acid sequence of SEQ ID NO
6
; and (c) any of the isolated nucleic acid sequences described above. Within a particularly preferred embodiment, a cDNA sequence encoding a simian ETF polypeptide is provided that has a 483-bp 5′ noncoding region preceding an open reading frame of 486 bp (489 bp if the stop codon is included) and a 306-bp 3′ noncoding region. Also provided is a cDNA sequence encoding a human ETF polypeptide which has a 316-bp 5′ noncoding region preceding an open reading frame of 486 bp and a 400-bp 3′ noncoding region. The nucleotide sequences and deduced amino acid sequences of simian and human open reading frames are disclosed in SEQ ID NOS
1
and
4
, respectively. Both the simian and human open reading frames (SEQ ID NOS
2
and
5
, respectively) encode a precursor polypeptide. The precursor polypeptides each comprise a 48-amino acid leader sequence, and are followed by the mature simian or human ETF polypeptides. Active simian and human ETF polypeptides are disclosed in SEQ ID NO
3
and
6
, respectively.
Also provided by the present invention are isolated antibodies which specifically b

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Antibodies to epithelium-derived T-cell factor does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Antibodies to epithelium-derived T-cell factor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Antibodies to epithelium-derived T-cell factor will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2604830

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.