Antibodies specific for vascular endothelial growth factor-B

Drug – bio-affecting and body treating compositions – Immunoglobulin – antiserum – antibody – or antibody fragment,... – Monoclonal antibody or fragment thereof

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S001490, C424S158100, C435S007100, C530S387900, C530S388100, C530S388230, C530S391100, C530S391300

Reexamination Certificate

active

06331301

ABSTRACT:

BACKGROUND OF THE INVENTION
Angiogenesis, or the proliferation of new capillaries from pre-existing blood vessels, is a fundamental process necessary for normal growth and development of tissues. It is a prerequisite for the development and differentiation of the vascular tree, as well as for a wide variety of fundamental physiological processes including embryogenesis, somatic growth, tissue and organ repair and regeneration, cyclical growth of the corpus luteum and endometrium, and development and differentiation of the nervous system. In the female reproductive system, angiogenesis occurs in the follicle during its development, in the corpus luteum following ovulation and in the placenta to establish and maintain pregnancy. Angiogenesis additionally occurs as part of the body's repair processes, e.g. in the healing of wounds and fractures. Angiogenesis is also a factor in tumor growth, since a tumor must continuously stimulate growth of new capillary blood vessels in order to grow.
Capillary blood vessels consist of endothelial cells and pericytes. These two cell types carry all of the genetic information to form tubes, branches and entire capillary networks. Specific angiogenic molecules can initiate this process. In view of the physiological importance of angiogenesis, much effort has been devoted to the isolation, characterization and purification of factors that can stimulate angiogenesis. A number of polypeptides which stimulate angiogenesis have been purified and characterized as to their molecular, biochemical and biological properties. For reviews of such angiogenesis regulators, see Klagsbrun et al., “Regulators of Angiogenesis”,
Ann. Rev. Physiol.,
53:217-39 (1991); and Folkman et al., “Angiogenesis,”
J. Biol. Chem.,
267:10931-934 (1992). Recent results have implicated several endothelial receptor tyrosine kinases (RTKs) in the establishment and maintenance of the vascular system.
One such growth factor, which is highly specific as a mitogen for vascular endothelial cells, is termed vascular endothelial growth factor (VEGF). See Ferrara et al., “The Vascular Endothelial Growth Factor Family of Polypeptides,”
J. Cellular Biochem.,
47:211-218 (1991); Connolly, “Vascular Permeability Factor: A Unique Regulator of Blood Vessel Function,”
J. Cellular Biochem.,
47:219-223 (1991). VEGF is a potent vasoactive protein that has been detected in media conditioned by a number of cell lines including bovine pituitary follicular cells. VEGF is a glycosylated cationic 46-48 kD dimer made up of two 24 kD subunits. It is inactivated by sulfhydryl reducing agents, resistant to acidic pH and to heating, and binds to immobilized heparin. VEGF is sometimes referred to as vascular permeability factor (VPF) because it increases fluid leakage from blood vessels following intradermal injection. It also has been called by the name vasculotropin.
Four different molecular species of VEGF have been detected. The 165 amino acid species has a molecular weight of approximately 46 kD and is the predominant molecular form found in normal cells and tissues. A less abundant, shorter form with a deletion of 44 amino acids between positions 116 and 159 (VEGF
121
), a longer form with an insertion of 24 highly basic residues in position 116 (VEGF
189
), and another longer form with an insertion of 41 amino acids (VEGF
206
), which includes the 24 amino acid insertion found in VEGF
189
, are also known. VEGF
121
and VEGF
165
are soluble proteins. VEGF
189
and VEGF
206
appear to be mostly cell-associated. All of the isoforms of VEGF are biologically active. For example, each of the species when applied intradermally is able to induce extravasation of Evans blue.
The various species of VEGF are encoded by the same gene and arise from alternative splicing of messenger RNA. This conclusion is supported by Southern blot analysis of human genomic DNA, which shows that the restriction pattern is identical using either a probe for VEGF
165
or one which contains the insertion in VEGF
206
. Analysis of genomic clones in the area of putative mRNA splicing also shows an intron/exon structure consistent with alternative splicing.
The different isoforms of VEGF have different chemical properties which may regulate cellular release, compartmentalization, bioavailability and possibly also modulate the signalling properties of the growth factors.
Analysis of the nucleotide sequence of the VEGF gene indicates that VEGF is a member of the platelet-derived growth factor (PDGF) family. VEGF and PLGF are ligands for two endothelial RTKs, flt-1 (VEGF receptor 1, VEGFR1) and flk-1/KDR (VEGF receptor 2, VEGFR2). The amino acid sequence of VEGF exhibits approximately 20% homology to the sequences of the A and B chains of PDGF, as well as complete conservation of the eight cysteine residues found in both mature PDGF chains. VEGF
165
, VEGF
189
and VEGF
206
also contain eight additional cysteine residues within the carboxy-terminal region. The amino-terminal sequence of VEGF is preceded by 26 amino acids corresponding to a typical signal sequence. The mature protein is generated directly following signal sequence cleavage without any intervening prosequence. The existence of a potential glycosylation site at Asn
74
is consistent with other evidence that VEGF is a glycoprotein, but the polypeptide has been reported to exist in both glycosylated and deglycosylated species.
Like other cytokines, VEGF can have diverse effects that depend on the specific biological context in which it is found. VEGF and its high affinity receptors flt-1 and KDR/flk-1 are required for the formation and maintenance of the vascular system as well as for both physiological and pathological angiogenesis. VEGF is a potent endothelial cell mitogen and directly contributes to induction of angiogenesis in vivo by promoting endothelial cell growth during normal embryonic development, wound healing, and tissue regeneration and reorganization. VEGF is also involved in pathological processes such as growth and metastasis of solid tumors and ischemia-induced retinal disorders. A most striking property of VEGF is its specificity. It is mitogenic in vitro at 1 ng/ml for capillary and human umbilical vein endothelial cells, but not for adrenal cortex cells, corneal or lens epithelial cells, vascular smooth muscle cells, corneal endothelial cells, granulosa cells, keratinocytes, BHK-21 fibroblasts, 3T3 cells, rat embryo fibroblasts, human placental fibroblasts and human sarcoma cells. The target cell specificity of VEGF is thus restricted to vascular endothelial cells. VEGF can trigger the entire sequence of events leading to angiogenesis and stimulates angiogenesis in vivo in the cornea and in a healing bone graft model. It is able to stimulate the proliferation of endothelial cells isolated from both small and large vessels. Expression of VEGF mRNA is temporally and spatially related to the physiological proliferation of capillary blood vessels in the ovarian corpus luteum or in the developing brain. VEGF expression is triggered by hypoxia so that endothelial cell proliferation and angiogenesis appear to be especially stimulated in ischemic areas. VEGF is also a potent chemoattractant for monocytes. In addition, VEGF induces plasminogen activator and plasminogen activator inhibitor in endothelial cells.
Tumor cells release angiogenic molecules such as VEGF, and monoclonal antibodies to VEGF have been shown to inhibit the growth of certain types of tumor such as rhabdomyosarcoma. See Kim et al., “Inhibition of Vascular Endothelial Growth Factor-Induced Angiogenesis Suppresses Tumor Growth in vivo,”
Nature,
362:841-844 (1993). This suggests that blocking VEGF action is of potential therapeutic significance in treating tumors in general, and highly-vascularized, aggressive tumors in particular.
SUMMARY OF THE INVENTION
It is an object of the invention to provide a new growth factor having the property of promoting proliferation of endothelial cells.
Another object of the invention is to provide isolated DNA sequences which encode a new growth fact

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Antibodies specific for vascular endothelial growth factor-B does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Antibodies specific for vascular endothelial growth factor-B, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Antibodies specific for vascular endothelial growth factor-B will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2567299

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.