Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Carbohydrate doai
Reexamination Certificate
2001-11-19
2004-11-23
Peselev, Elli (Department: 1623)
Drug, bio-affecting and body treating compositions
Designated organic active ingredient containing
Carbohydrate doai
C514S035000, C514S054000, C514S058000
Reexamination Certificate
active
06821959
ABSTRACT:
FIELD OF THE INVENTION
The present invention concerns antibiotic-natural polysaccharide polymer adducts based on non-covalent and non-ionic bonds, with an improved profile of activity compared with the corresponding antibiotic.
STATE OF THE ART
Many difficulties arising out of the chemotherapeutic treatment derive from the fact that some active principles do not possess optimum pharmacological and pharmaco-kinetic characteristics. One of the approaches used by the pharmaceutical technique to face the problems caused by a low bio-availability or a limited duration of the antibiotic effect, following oral or parenteral administration, consists in bonding the antibiotic to natural or synthetic, inert and bio-compatible polymers. However, the tests conducted in the bonding sector with polymers have reached a limited and, in particular, scarcely foreseeable, success. Grishin G. I., Tr. Leningrad, Khim-Farm. Inst. (1969), 27, 113-18, describes the interaction between penicillins or tetracyclines and some natural polysaccharides of microbic origin. The result of these interactions is far from being quantifiable and qualifiable, since, in some cases, the interaction is absent or low, in other cases it actually exists but does not produce any effects on in the antibiotic activity. This may be ascribable to a variety of reasons, such as the nature of the bond and the relationship between the molecules.
The antibiotic-polymer associations that have proved to be successful concern classes of well-defined antibiotics or single antibiotics, and are often characterized by the formation of covalent or ionic-bond complexes or conjugates, The patent application EP 0 392 487 (in the name of Takeda Chemical Industries Ltd.) describes a complex consisting of an anthracyclinic antibiotic bearing an aminosaccharide residue and a polyanion described as a natural or synthetic polymer with negatively charged residues, capable of forming ionic bonds with the positively charged aminosaccharide residues. Compare with the antibiotic, this complex has better characteristics of stability with at neutral pH, and this allows the production of slow-dropout release preparations, free of irritating effects on tissues.
The EP 0 428 486 patent (in the mane of Sandoz Ltd.) claims a water-soluble polimixin conjugate with a carrier, e.g. a polysaccharide such as dextran, which has a higher half-life and power activity compared to native poliximin. This conjugate's bond is of the aminic or carbamate type, i.e. covalent.
Molteni L., Optimization of Drug Delivery, Alfred Benzon Symposium 17, publishers: Hera Bundgaard. Anne Bagger Hansen, Helmer Hafod, Munksgaard, Copenhagen, 1982, deals discusses with the interaction of various types of substances, among which some antibiotics and polysaccharides, e.g. dextrans or inulin. The interaction is clearly of the covalent type because, due to the low chemical reactivity of polysaccharides and the presence of a number of hydroxilylic groups, the interaction Is said to be based on ester bonds with substances possessing carboxylic groups, or the hydroxylic groups may be oxidized to aldehydes or be replaced with reactive groups.
The covalent/ionic bonded polymer-antibiotic conjugate does not provide sure dependable results and, moreover, it represents and expensive and complex approach, from the a regulatory standpoint, to the solution of the activity problems, mentioned above, because (being chemical entities based on strong bonds, such as the covalent and ionic bond) these conjugates, which are pro-drugs, are considered as new compounds and it is necessary to characterize them chemically, to study their pharmaco-dynamic profile and clinical effectiveness.
The patent application EP 0 438 747 (in the name of Shionogi Seiyaku Kabushiki Kausha) claims a stable freeze-dried product composed of a glycopeptidic antibiotic and a water-soluble saccharyde, such as a polysaccharide (e.g. dextran), which is used in low percentages and has the function of a support stabilizer during the freeze-drying process. The glycopeptidic antibiotics, such as vancomycin are very particular drugs, particularly complex from a chemical standpoint, not orally administerable and, in a few cases, such as vancomycin, not even intramuscularly. In some cases, they may be highly nephrotoxic.
A composition containing a pharmaceutical or diagnostic agent and dextran is disclosed by the U.S. Pat. No. 4,315,002. Said agent may be an antibiotic or an enxyme and the composition is particularly suitable for sensitive pharmaceutical active compounds and enzymes for diagnostic purposes and for biochemical analyses.
SUMMARY OF THE INVENTION
It has been now surprisingly found that antibiotic-natural polysaccharide adducts, characterized by weak bonds—such as, for example, the hydrogen bond—compared to the same free antibiotic, have an equal or higher microbiological activity or therapeutic effectiveness, with reduced molar doses of the antibiotic and, inter alia, are less toxic.
DESCRIPTION OF THE INVENTION
The object of the present invention is represented by antibiotic-natural polysaccharide adducts, in which the interaction between the two components is based on non-covalent and non-ionic bonds.
More specifically, the adducts of the present invention contain an antibiotic selected from the group consisting of &bgr;-lactam, aminoglycoside and macrolide antibiotics, linked by a non-covalent and non-ionic bond to a natural polysaccharide.
Among the preferred antibiotics preferred according to the present invention penicillins such as amoxicillin; cephalosporins such as cefadrin, axetilcefuroxime, cefazolin, cefotaxime and cefotriaxone; aminoglycosides such as neomycin, gentamicin, amikacin and apramicin; macrolides such as erythromycin, roxitromycin and azytromycin are cited. Amoxicillin, cefadrin and gentamicin are particularly preferred.
The polysaccharides useful for the present Invention are biocompatible and inert and, therefore, have no effects from a pharmacological and toxicological standpoint. They are possibly preferably selected among dextrans, inulin and maltodextrin. For the purposes of the present invention, a special preference is given to dextrans.
Dextrans are hydrophilic and water-soluble polymers, stable to against the enzymatic attack, consisting of linear chains of (-D glucose molecules. Their molecular weight ranges from 1,000 Dalton (dextran 1) to 110,000 Dalton (dextran 110). Dextrans having a molecular weight below 4,000 Dalton, are completely excreted eliminated in the urine within 48 hours, while those having higher molecular weights remain in circulation for longer periods. For the uses of the present invention, the preference is given to dextrans 4-70, i.e. having a molecular weight ranging from 4,000 to 70,000 Dalton.
According to the present invention, the antibiotic percentage over the total adduct may range from 20% to 60% by weight.
The bond between the antibiotic and the polysaccharide in the adduct of the present invention is of the non-covalent and non-ionic type, as may be easily deduced from the mode of preparation of these adducts, requiring a co-solution in water of the polysaccharide and the antibiotic and the remotion of the solvent by known thecniques such as lyophilization and spray drying. This allows the hydrophilic interaction between the OH groups, either carboxylic or not, of the antibiotic and those of the polysaccharide, through weak bonds so called just because they need for less energy (approx. 3-5 kcal/mol.) to be crackedbroken, compared to covalent and ionic bonds, which require an energy of at least 50-100 kcal/mol. As shown In Remington's Pharmaceutical Science, XVIII ed., page 186 seq., where these adducts are named “molecular complexes”, the kind of interaction may be of various type (from the hydrogen bond to the hydrophobic interaction to the charge transfer).
The adducts of the present invention are obtained through quick and economical processes, compared to the traditional approaches that use a covalent bond between the antibiotic and the polysacchar
Anzaghi Piergiorgio
Stefli Rosanna
Abelman ,Frayne & Schwab
Istituto Biochimico Pavese Pharma S.p.A
Peselev Elli
LandOfFree
Antibiotic-natural polysaccharide polymer adducts does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Antibiotic-natural polysaccharide polymer adducts, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Antibiotic-natural polysaccharide polymer adducts will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3312229