Anti-theft device for water vehicle

Marine propulsion – Engine – motor – or transmission control means

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C180S287000, C307S010200, C307S010300, C440S085000

Reexamination Certificate

active

06582261

ABSTRACT:

PRIORITY INFORMATION
This application is based on and claims priority to Japanese Patent Application No. 2001-028537 filed Feb. 5, 2001, the entire contents of which is hereby expressly incorporated by reference.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention generally relates to controls for vehicles. More specifically, the present invention relates to an anti-theft device for a water vehicle.
2. Related Art
The popularity of personal watercraft has increased over the last few decades. Unfortunately, this increase in popularity has also brought about an increase in personal watercraft theft.
In order to protect against personal watercraft theft, personal watercraft in the past have included a number of anti-theft devices. One of these devices is a lanyard switch which also functions as an emergency shut-off device. The lanyard switch includes a stop switch that protrudes from a handlebar assembly and a claw-shaped lanyard lock plate that engages the stop switch for allowing an ignition system of an engine to operate. The lock plate includes a cord and a wrist strap for attaching the lock plate to an operator's wrist or cloth for attaching the lock plate to the operator's clothing so that if the operator falls off the watercraft during operation, the lock plate will be disengaged from the stop switch so as to kill the engine.
This type of lanyard switch provides some anti-theft protection because the lock plate is required to engage the stop switch in order to start and operate the engine. The problem with using such a lanyard switch as the only means of anti-theft protection is that other plates and mechanisms can be substituted for a lock plate, thus allowing the engine to start and operate without using the lock plate originally supplied with the watercraft. As a result, this type of lanyard switch alone does not provide significant anti-theft protection.
Other watercraft have included a lanyard with a computer chip embedded therein which includes a unique identification number. The associated watercraft communicates with the computer chip to determine if the correct identification number is stored in the computer chip. An electronic controller within the watercraft is programmed to allow the engine to operate only if the correct lanyard is connected. If the correct lanyard is not connected, the controller does not allow the engine to operate. Other conventional watercraft have included a main switch connecting series between a battery used with a watercraft and an electronic control within the watercraft. The main switch is operable with a unique key. Thus, no power can reach the engine control of the watercraft unless the key is inserted in the main switch and turned to the proper orientation.
SUMMARY OF THE INVENTION
There are many circumstances under which the battery of a personal watercraft can be drained to a state where it can no longer start the engine of the watercraft. For example, during use, the batteries within the personal watercraft often become wet. Wetness on the battery can cause surface drain, i.e., the loss of electrical power due to the flow of electricity between the poles of the battery across the water and/or other deposits formed on the surface of the battery. Additionally, often during the operation of a personal watercraft, a rider may find it necessary to start, stop and re-start the engine numerous times without allowing the engine to run sufficiently long to recharge the battery, such as during docking maneuvers.
One aspect of the present invention includes the realization that watercraft and other vehicles that employ a key-operated main switch for connecting and disconnecting the main engine computer with the battery allows a user to inadvertently discharge the battery. For example, known watercraft, outboard motors, automobiles, and other vehicles, have been known to incorporate a main switch for connecting the engine and its associated control computer, with the battery. Automobiles use such systems in which a key is inserted into a master key cylinder and rotated through at least two positions. The first position connects the battery with the electrical system of the automobile. The second position energizes the starter motor. Once the engine begins to run, the key is returned to the first position at which time the control computer takes over and controls the operation of the engine. Similarly, known watercraft have included a key operated main switch connected in series between a battery and the engine controller. This switch has two positions, the first position which disconnects the controller from the battery, and a second position which connects the controller with the battery. If a user of either of these vehicles inadvertently leaves the key in the first position, i.e., with the battery connected to the engine controller, the battery can be inadvertently drained even though the engine is not operating.
In accordance with another aspect of the present invention, a watercraft includes a hull, a battery, an engine, and a starter motor configured to start the engine. The watercraft also includes an engine controller configured to control at least one of fuel supply and ignition for operation of the engine. A first user operable switch is configured to allow a user to selectively actuate an electrical circuit within a watercraft. A power supply for the controller is configured to supply power to the controller only after the first user operable switch is activated. Finally, the watercraft includes a third user operable switch movable between at least two positions. In a first position, the second user operable switch disables the first user operable switch such that the power supply will not supply power to the controller regardless of the actuation of the first user operable switch.
As such, the watercraft provides better protection against the inadvertent discharge of the battery. For example, since the power supply for the controller only supplies power to the engine controller after the first user operable switch is actuated, the battery will not be inadvertently discharged if the second user operable switch is left in the on position. Additionally, when the second user operable switch is in the second position, i.e., disabling the first user operable switch, the battery will not be discharged if another user, such as an unauthorized user, repeatedly pushes the start button. In this situation, no energy at all will flow to the engine controller. Thus, the present anti-theft system provides better protection against inadvertent battery discharge compared to those systems which use the controller to verify the presence of a digitally encoded security check.
Another aspect of the invention is directed to a watercraft having a hull and an engine having a crankshaft. A starter motor is configured to rotate the crankshaft. A starter relay powers the starter motor. A starter switch is configured to activate the starter relay. An engine controller is configured to control at least one of fuel supply and ignition for operation of the engine. A kill switch is configured to kill the engine. The watercraft also includes a third switch device comprising kill switch bypass switch, the kill switch bypass switch is disposed remotely from the starter relay.
A further aspect of the present invention is directed to an electrical system for a vehicle having an engine. The electrical system includes a power source, an engine controller configured to control at least one operational parameter of the engine, a user-operable start switch and a user-operable kill switch. The electrical system also includes a third user-operable switch device configured to disable the start switch and bypass the kill switch when in a first state and enable both the start switch and kill switch when in a second state.


REFERENCES:
patent: 4107543 (1978-08-01), Kaplan
patent: 4196418 (1980-04-01), Kip et al.
patent: 4315160 (1982-02-01), Levine
patent: 4369745 (1983-01-01), Howard
patent: 4471345 (1984-09-01), Barrett, Jr.
patent: 4534

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Anti-theft device for water vehicle does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Anti-theft device for water vehicle, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Anti-theft device for water vehicle will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3122947

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.