Anti-reflective films

Stock material or miscellaneous articles – Composite – Of quartz or glass

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C428S428000, C428S432000, C428S213000, C428S216000, C428S701000, C428S702000, C359S359000, C359S580000, C359S582000, C359S585000, C359S586000

Reexamination Certificate

active

06265076

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates to a multi-layer film stack suitable for use as an anti-reflective coating on a transparent substrate such as glass. More particularly, this invention relates to a multi-layer film stack which is applied onto a glass substrate to impart anti-reflective properties to a coated glass article which is normally viewed at a non-normal angle, such as a vehicle windshield.
Coatings on glass are commonly utilized to provide specific energy attenuation and light transmittance properties. Additionally, coatings are designed to reduce reflections from interfaces between individual coating layers and the glass when a plurality of coatings are applied onto a glass substrate. The coated articles are often utilized singularly, or in combination with other coated articles, to form a glazing.
The attributes of the resulting coated glass substrate are dependent upon the specific coatings applied to the glass substrate. The coating compositions and thicknesses impart energy absorption and light transmittance properties within the coated article while also affecting the spectral properties. Desired attributes may be obtainable by adjusting the compositions or thicknesses of the coating layer or layers.
Anti-reflective coatings on glass are utilized to reduce the surface reflection of optical components and to reduce the reflectance of an interface between optical media with different refractive indices. The reduction of visible reflection is achieved by the principle of optical interference. When light impinges on the air-film, film-film, and film-glass interfaces, a portion of the beam is reflected at each interface. By proper choice of thin film materials and thicknesses, the individual reflected light beams can destructively interfere, thereby reducing the observed visual reflectance. However, adjustments to enhance a specific property can adversely impact other transmittance or spectral properties of the coated glass article. Obtaining desired spectral properties is often difficult when trying to combine specific energy absorption and light transmittance properties in a coated glass article.
Conventional multi-layer anti-reflective films generally follow a standard design formula to optimize the reduction of visible light reflected from the interfaces of the coated glass substrate. The standard design parameters suggest the use of a two layer coating, of both high and low indices, with each coating having a thickness determined by l/(4*n), where l is a design wavelength in the visible region, and n is the refractive index of the coating. These design parameters provide an anti-reflective film stack which minimizes visible reflection from the coated glass article at a normal angle which is normal to the glass article.
It would be desirable to manufacture an anti-reflective transparent substrate that is viewed, for the most part, at a non-normal angle.
SUMMARY OF THE INVENTION
The invention is an anti-reflective transparent article which includes a transparent substrate. The article also includes a first coating of metal oxide applied over the substrate. The first coating of metal oxide has a reflective index of about 1.8 to about 2.6. The article further includes a second coating of a metal oxide applied over the first coating of metal oxide. The second coating has a refractive index of about 1.44 to about 1.6. The reflectivity of the article when measured at an angle of at least 50 degrees from normal is at least three percentage points less than the reflectivity of the uncoated substrate at the same angle.
The anti-reflective transparent article of the invention is particularly well adapted for use as a vehicle windshield.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
The coated glass articles produced in accordance with the standard anti-reflective film stack design have the generally desired effect upon the reflective properties for most applications of the coated glass articles. However, certain glass articles are intended to be viewed, for the most part, at a non-normal angle. A vehicle windshield is perhaps the best example of such a glass article. Such windshields are being installed in current vehicles at increasingly greater angles of installation and are therefore being viewed at angles farther and farther from normal. As a result, greater amounts of visible light are reflected from the vehicle dashboard and then off of the windshield into the eyes of the vehicle's driver and any front seat passengers.
While the application of conventional anti-reflective films to a vehicle windshield can serve to reduce the visible reflections, it has been determined that the anti-reflective effect can be optimized in such an application by selecting a multi-layer film stack having non-conventional layer thicknesses. Thus, in accordance with the invention, there is provided a multi-layer film stack for use as a coating on glass article intended to be viewed at a non-normal angle which provides improved reduction of the reflection of visible light at the intended viewing angle.
The multi-layer coating of the invention is applied over a transparent substrate, with a glass substrate being preferred. The glass substrates suitable for use in preparing the coated glass article according to the present invention may include any of the conventional clear glass compositions known in the art. The most preferred substrate is a clear float glass ribbon wherein the coating stack of the present invention, along with other optional coatings, is applied in the heated zone of the float glass process. However, other conventional processes for applying coatings on glass substrates are suitable for use with the present inventive coating. Additionally, colored glass compositions may be utilized with the anti-reflective coating of the present invention to achieve specific spectral and energy attenuation properties.
The first layer of the present invention is a high refractive index film of a metal oxide or doped metal oxide. The refractive index is generally about 1.8 to about 2.6. Preferred metal oxides, or doped metal oxides, include tin oxide, titanium oxide, or fluorine doped tin oxide. However, other conventional metal oxide films that have a refractive index within the specified range are suitable for use with the present invention. For example, other materials could include mixed metal oxides, oxy-nitrides, aluminum oxide, or tantalum oxide. The selection of a high refractive index material is relative to the low refractive index material utilized in the multi-layer coating.
The second layer of the anti-reflective coating is a metal oxide having a refractive index of about 1.44 to about 1.6. Preferably, silicon oxide is utilized as the second layer of the present invention. However, other metal oxides having low refractive indices are suitable for use with the present invention. The thicknesses of the first and second layers of the multi-layer coating are determined by the specific metal oxides employed and the angle at which resulting article is intended to be viewed.
The coating of the invention is especially useful for article intended to be viewed at an angle of at least 50 degrees from normal. At a viewing angle of at least 50 degrees from normal, the present inventive coating exhibits a reflectivity which is at least about 3 percentage points less than that of the uncoated substrate. As used herein, the term “reflectivity” is the total percentage of light reflected at a given angle over the visible wavelength range of 380 nm to 780 nm. At a viewing angle of at least 50 degrees from normal, the coating of the invention exhibits a color purity which is less than 10. Further, at a viewing angle of at least 60 degrees from normal, the coating of the invention may exhibit a color purity of less than 5.
The coatings employed in the invention are preferably deposited pyrolytically in an on-line process. For such pyrolytic deposition, the metal oxides or doped metal oxides of the present invention may be deposited onto the glass substrate through the use of

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Anti-reflective films does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Anti-reflective films, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Anti-reflective films will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2517357

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.