Anti-reflection conducting coating

Optical: systems and elements – Light interference – Produced by coating or lamina

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C359S580000, C359S588000

Reexamination Certificate

active

06532112

ABSTRACT:

FIELD OF THE INVENTION
The present invention is related to an anti-reflection conducting coating, for plastic and/or glass substrate, whereby the layer system has a high anti-reflection effect. More specifically the invention related to a layer structure, which contains a high refractive index oxide material as outermost layer and has a photopic reflectance below 0.5%.
BACKGROUND OF THE INVENTION
U.S. Pat. No. 4,921,760, whose disclosure is an multi-layer anti-reflection coating with excellent adhesion between CeO
2
layer and synthetic resin. The layer system including CeO
2
, Al
2
O
3
, ZrO
2
, SiO
2
, TiO
2
and Ta
2
O
5
. All the thin films of the layer system are oxide materials. There are 3 to 5 thin layers in the layer system. For a given example, the total thickness of the 5 layer structure was about 3580 Angstroms. The material of the outermost thin layer of the layer system is SiO
2
which has a low-refractive index about 1.46 at 550 nm.
U.S. Pat. No. 5,105,310, whose disclosure is a multi-layer anti-reflection coating designed for deposition in in-line coating maching by reactive sputtering. The layer system including TiO
2
, SiO
2
, ZnO, ZrO
2
and Ta
2
O
5
. All the thin films of the layer system are oxide material. There are 4 to 6 thin layers in the layer system. For a given example, the total thickness of the 6-layer structure was about 4700 Angstroms. The material of the outermost thin layer of the layer system is SiO
2
, which has a low-refractive index about 1.46 at 550 nm.
U.S. Pat. No.5,091,244 and 5,407,733 disclosed a new type electric conductive light-attenuating anti-reflection coating. The major claim is an article comprising of nitrides of certain transition metal to provided an electrically-conductive, light-attenuating, anti-reflection surfaces. The layer systems including TiN, NbN, SnO
2
, SiO
2
, Al
2
O
3
, and Nb
2
O
5
. The thin films of the layer system are nitride and oxide materials. There are 3 to 4 thin layers in the layer system. For a given example, the total thickness of the 4 layer structure was about 1610 Angstroms. The transmission of visible light of these two layer systems is below 50%. The material of the outermost thin layer of the layer system is SiO
2
which has a low-refractive index about 1.46 at 550 nm.
U.S. Pat. No. 5,147,125, whose disclosure is a multi-layer, anti-reflection coating using zinc oxide to provide UV rejection for wave-lengths shorter than 380 nm. The layer system including TiO
2
, SiO
2
, ZnO, and MgF
2
. All the thin films of the layer system are oxide and floride. There are 4 to 6 thin layers in the layer system. For a given example, the total thickness of the 5 layer structure was about. 7350 Angstroms. The material of the outermost thin layer of the layer system is MgF
2
which has a low-refractive index about 1.38 at 550 nm.
U.S. Pat. 5,170,291 disclose a 4 layer system which is optical effective and has a high anti-reflective effect. The layers can be formed by either a pyrolytic method, a plasma-supported chemical vapor deposition method, a sputtering method or a chemical deposition method. The layer system including SiO
2
, TiO
2
, Al
2
O
3
, ZnS, MgO and Bi
2
O
3
. For a given sample, the total thickness of the 4 layer structure was about 2480 Angstroms. The material of the outermost thin layer of the layer system is SiO
2
which has a low-refractive index about 1.46 at 550 nm.
U.S. Pat. No. 5,216,542 whose disclosure is a 5 layer coating with high anti-reflection effect. The process use an adhesive layer of Ni, Cr or NiCr metal with a thickness about 1 nm (manometer). Other four layers are compose of SnO
2
, ZrO
2
, ZnO, Ta
2
O
5
, NiO, CrO
2
, TiO
2
, Sb
2
O
3
, In
2
O
3
, Al
2
O
3
, SiO
2
, TiN and ZrN. For a given example, the total thickness of the 5 layer structure was about 2337 Angstroms. The transmission of visible light of this layer system is below 30%. The material of the outermost thin layer of the layer system is SiO
2
which has a low-refractive index about 1.46 at 550 nm.
U.S. Pat. No. 5,541,770 whose disclosure is a light attenuating anti-reflection coating including electrically conductive layers. It is a four or five layer system. A light absorption high refractive index metal such as Cr, Mo and W was used as a optically effective thin film in the layer system. The other three or four layers are TiO
2
, ITO, Al
2
O
3
, SiO
2
and TiN. The patent shows that the majority materials of the layer system are oxide and nitride, only one metal film was used as an optical effective thin film in the anti-reflection coating. For a given example, the total thickness of the 5 layer structure was about 1495 Angstroms. The transmission of visible light of this layer system is below 60%. The material of the outermost thin layer of the layer system is SiO
2
which has a low-refractive index about 1.46 at 550 nm.
U.S. Pat. No. 5,362,552 whose disclosure is a 6-layer anti-reflection coating includes three layers of electrically-conductive metal oxide. The layer system including SiO
2
, ITO, Nb
2
O
5
, and Ta
2
O
5
. Up to a total optical thickness of about one-wavelength of visible light of the electrically conductive metal oxide may be included in the coating. For one of given example of 6 layer structure, the materials and thickness of the majory two layers within this 6 layer system are SiO
2
, 854 Angstroms and ITO 1975 Angstroms. Anyway, The material of the outermost thin layer of the layer system is SiO
2
which has a low-refractive index about 1.46 at 550 nm.
U.S. Pat. No. 5,579,162 whose disclose is a 4-layer anti-reflection coating for a temperature sensitive substrate such as plastic. One layer is a DC reactively sputtered metal oxide which may be deposited quickly and without imparting a large amount of heat to the substrate. The layer system including SnO
2
, SiO
2
and ITO. For one of given example of the 4 layer structure, the materials and thickness of the majority two layers within this system are SnO
2
, 763 Angstroms and SiO
2
940 Angstroms. The material of the outermost thin layer of the layer system is SiO
2
which has a low-refractive index about 1.46 at 550 nm.
U.S. Pat. No. 5,728,456 and 5,783,049, disclosed An improved may to deposit anti-reflection coating on plastic film. The multi-layer thin films was coated by a roller coating with sputtering process. The layer system including ITO, SiO
2
and a thin lubricating over layer which is a solvent-soluble fluoropolymer. For a given example, the total thickness of the 6 layer system was about 2630 Angstrom. The material of the outermost thin layer of the layer system is SiO
2
which has a low-refractive index about 1.46 at 550 nm.
The above description show clearly that the material of outermost thin layer of the optical layer system is SiO
2
or MgF
2
, which has a low refractive index of 1.46 and 1.38 at 550 mm, respectively.
SUMMARY OF THE INVENTION
An object of the present invention is to provide an anti-reflection coating layer system composed of 5 oxide layer and more specifically the material of outermost layer has a high refractive index between 1.9 to 2.1.
The process of manufacturing oxide thin film in volume production was high reliable and was routinely used in the industries such as semiconductor, disc head, LCD, CRT, architecture glass, touch sensor, screen filter and plastic web coating for a several ten years.
It is well known that conventional layer structure for an anti-reflection optical coating has a general principle. The basic principle is that the outermost layer of the optical coating is a material of low refractive index such as SiO
2
with refractive index of 1.46 or MgF
2
with refractive index 1.38. However, when we applied the anti-reflection coating on the display industry for example screen filter for computer monitor, or low reflection glass for flat CRT, there are some bottle neck in the process of high volume mass production. The basic reason is in the convention optical layer structure the conductive layer was buried by an insulating layer for example SiO
2
or MgF
2
.
In the general design r

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Anti-reflection conducting coating does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Anti-reflection conducting coating, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Anti-reflection conducting coating will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3062926

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.