Anti-reflection coatings and coated articles

Optical: systems and elements – Light interference – Produced by coating or lamina

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C359S580000

Reexamination Certificate

active

06172812

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention generally relates to improving the transmission of light through optical materials, such as spectacle lenses and, at the same time, reducing reflection of stray light that leads to glare from optical materials. The invention further relates to controlling the perceived color of light reflected from the surface of optical materials.
All uncoated, optically transparent materials reflect a portion of incident light. The amount of reflection varies with the wavelength, polarization, and angle of incidence of the light as well as the wavelength-dependent refractive index, n, of the material. This Fresnel reflection is described by Maxwell's equations for electromagnetic radiation, as known to those practiced in the art of optics and described, for example, by M. Born and E. Wolf in
Principles of Optics
, New York, Pergammon Press (1980). It is also known that layers of transmissive materials with refractive indices different from that of the substrate can reduce the amount of reflection. The amount of this reduction depends on the wavelength-dependent refractive index of the coating materials and their thickness as well as the wavelength, polarization, and angle of incidence of the light. The design and manufacture of these anti-reflection (AR) coatings is thoroughly described in Chapters 3 and 9 of H. A. McLeod,
Thin Film Optical Filters
, New York, McGraw-Hill (1989).
The sensitivity of the human visual system also varies with the wavelength of light and the angle with which it enters the eye, as described, for example, in Color Science:
Concepts and Methods, Quantitative Data and Formulae
by Gunter Wyszecki and W. S. Stiles (New York:Wiley) (1982) and Visual Perception by Nicholas Wade and Michael Swanston (London:Routledge) (1991). A problem therefore is to choose the coating thickness and composition so that the angular and wavelength variation of Fresnel reflection from the coated article as perceived by the human visual system is minimized.
Known AR coatings use one or more thin layers of inorganic oxides, nitrides, or fluorides to achieve a reduction in reflection. Common thin-film materials used for such AR coatings are described in chapter 9 and Appendix I of Mcleod and include oxides of Al, Sb, Be, Bi, Ce, Hf, La, Mg, Nd, Pr, Sc, Si, Ta, Ti, Th, Y, and Zr. Mcleod's tabulation also includes fluorides of Bi, Ca, Ce, Al, La, Na, Pb, Li, Mg, Nd, Na, and Th, as well as a few sulphides and selenides. A similar tabulation is found in table 4.1 on page 179 of
Optics of Multilayer Systems
(Sh. A. Furman and A. V. Tikhonravov, Editions Frontieres:Gif-sur Yvette Cedex- France, 1992). The number of layers and their compositions are generally chosen based on auxilliary constraints including hardness or scratch resistance, adhesion, durability, ease of deposition, cost, and other factors familiar to those practiced in the art of optical coatings. However the layer thicknesses are generally adjusted to minimize the proportion of incident light that is reflected (reflectance) at normal incidence and one or more specified wavelengths. A problem therefore is to choose a set of layer thicknesses that minimize or significantly reduce the amount of reflected light that can be perceived by the human visual system over all relevant angles and wavelengths.
As described above, the amount of reflectance from a coated article varies with angle and wavelength. When uncoated spectacle lenses are worn, a person looking at the wearer perceives a reflection of light from the environment, i.e., “glare.” The color of this reflection is, for uncoated lenses, typically that of the ambient light source(s) because the variation of reflection with wavelength from an uncoated spectacle is quite small. This result is generally true for mildly dispersive optical materials such as glass, polycarbonate, polymethylmethacrylate, and other spectacle lens materials. A plot of the wavelength and angle dependent reflectance for glass is shown in FIG.
1
.
The amount of reflected light from an AR coated article varies more dramatically with wavelength and angle, so that the perceived color of the reflection may differ from that of the light source. As this color influences the cosmetic quality of a spectacle lens, and other optical substrates, it is therefore, desirable to reduce reflection while controlling the perceived color of reflected light.
SUMMARY OF THE INVENTION
In accordance with the present invention, an anti-reflection (AR) coating is designed using the wavelength and angle dependent refractive properties of one or more thin layers on an optical substrate. The number and ordering of the layers is determined by non-optical constraints such as adhesion, durability, cost, ease of deposition, and the like. A perceived reflectance, F, which weights the angle- and wavelength-dependent Fresnel reflectance by the angle and wavelength sensitivity of the human visual system, is computed for each combination of layer thicknesses. In one embodiment, the value of F is calculated to obtain a minimum value unique to the combination of optical substrate and layers of coated material, for any specified viewing conditions. In an alternative embodiment, the thicknesses of the one or more layers of material are such that perceived reflectance of the coated substrate is not completely minimized, but is close to, and preferably within 25% of the minimum value of F, for the specified viewing conditions. The advantage of this approach is that one obtains a coated substrate having the absolute lowest value of perceived reflectance over a range of wavelengths and angles for a given geometry of viewing conditions. Alternatively, where absolute minimization is not required, perceived reflectance is reduced to within 25% or less of the minimum value—still far lower than the value of perceived reflectance otherwise obtainable.
In one embodiment of the invention, the layer or layers (also referred to as “coatings” or “films”) are formed by plasma-enhanced chemical vapor deposition (PECVD) of volatile precursors, non-limiting examples of which include organic and organometallic compounds. Alternatively, one or more layers are formed by sputtering or evaporation, using techniques and materials well known in the art. The McLeod reference provides a good description of such techniques and materials. The resulting layers may be optically dispersive (i.e., have a variation of refractive index with wavelength). Alternatively, the resulting layer(s) may not be optically dispersive. The layers have refractive properties that depend on the precursor, the deposition conditions, and the film thickness. Both single and multiple layer AR coatings are prepared in this manner.
A further aspect of the present invention is the control of the perceived color of light reflected by the coated article. For each set of film thicknesses the color perceived by reflection of standard illuminants, (e.g. daylight, fluorescent, incandescent, or arc lamps) is computed using standard colorimetric methods. The perceived color and its variation with angle are then used as constraints while the perceived reflectance is minimized. This process leads to a coated article that exhibits a minimum perceived reflectance (or a value within 25% or less of minimum) of desired color.


REFERENCES:
patent: 3356522 (1967-12-01), Libbert
patent: 3892490 (1975-07-01), Uetsuki et al.
patent: 4058638 (1977-11-01), Morton
patent: 4096315 (1978-06-01), Kubacki
patent: 4130672 (1978-12-01), Onoki et al.
patent: 4166784 (1979-09-01), Chapin et al.
patent: 4172156 (1979-10-01), Ritter et al.
patent: 4311725 (1982-01-01), Holland
patent: 4374158 (1983-02-01), Taniguchi et al.
patent: 4599272 (1986-07-01), Ichikawa
patent: 4632844 (1986-12-01), Yanagihara et al.
patent: 4676646 (1987-06-01), Strand et al.
patent: 4815962 (1989-03-01), Cardone
patent: 4830873 (1989-05-01), Benz et al.
patent: 4837044 (1989-06-01), Murarka et al.
patent: 4842941 (1989-06-01), Devins et al.
patent: 4906844 (1990-03-01), Hall
patent: 5053244 (1991-10

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Anti-reflection coatings and coated articles does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Anti-reflection coatings and coated articles, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Anti-reflection coatings and coated articles will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2557351

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.