Anti-pinch knuckle for bidirectional sleeve

Miscellaneous hardware (e.g. – bushing – carpet fastener – caster – Hinge – Including means to hold or retard hinged members against...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C403S102000, C403S161000, C114S361000

Reexamination Certificate

active

06711783

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to an articulating support strength member. More particularly, the field of this strut invention relates to a support member used in—but not limited to—the flexible coverings field with particular emphasis on marine canvas, vinyl and similar synthetic materials.
Additionally the field relates to an articulating knuckle insert compatible with industry standard marine grade structural tubing. Further, my field of invention relates to inserts at a strut joint which have an anti-pinch configuration for positively moving the bidirectional sleeve away from the folding joint and thus assuring freedom of folding without damage to related structure.
EXPLANATION OF TERMS
Certain terms are used to introduce and explain the background of the art and the invention; and, for convenience and completeness sake, such terms are summarized in this section. These terms are not meant to supersede the claims nor the definition of terms as defined within the four corners of the specification; but, rather, are meant to further the understanding of the invention and briefly introduce the technical art stage for a detailed teaching of the improvement in the art as provided by this invention as claimed.
Locking Sleeve
A slidable tubular sleeve of an internal diameter a few thousands of an inch or so larger than the external diameter of its strut strength member counterparts. In rough weather a user may fail to completely slide the sleeve away from the folding strut section, and by gravity or weather such sleeve may become lodged and pinched at the strut's folding joint with sufficient applied leverage by the strength members so as to cause structural damage.
Latching Detents.
Spring loaded balls which protrude partially through holes in sectional members, of a support strut. These detents retain the locking sleeve in place over an articulating bridge, thus locking the strut in an extended and taut position. In some installations the detent may be located so close to a strut securing fixture that the sleeve will not completely clear the detent in the unlocked configuration, with the possibility of the sleeve slipping into the joint and causing strut and/or framework breakage.
Articulating Bridge.
A short, relieved and shaped bridge (sometimes referred to herein as “link”) which is hinge-pin connected at each end to identical, mirror image socket insert hubs. This articulating bridge, in concert with flat-faced mating socket hubs, creates a double knuckle two axis, foldable joint. Such bridges of my invention have a novel shape that bears against and automatically expels the slidable locking sleeve away from the folding joint.
Inserts (Sometimes Called Double Knuckle Hubs)
Relieved and shaped, but generally cylindrical, hubs of a snug fit diameter which are inserted into and fixed by pins to one member of a foldable two member strut. Such hubs receive and house the ends of a bridge cross piece of a novel configuration so as to provide safe and sure foldability for the joined strut sections. The bridge cross piece is uniquely shaped so as to not only expel the locking sleeve away from the joint location but also to provide an installation stop within the insert. Providing such hub inserts with a raised shoulder and an interior snug fit allows the hub to generally have the same outer diameter as the associated tube into which it is housed. This insert shoulder also contributes to my improvement features.
Foldable Strut.
In mechanical terms, a strut is a brace fitted into a framework to add strength and rigidity. For this invention the term strut is generalized to include both structural legs of a rigid tubing strength member. A strut further includes a foldable joint which includes a double knuckle geometry that allows the two portions of the strut to fold upon itself, in one plane only, or unfold into a straight straight configuration where the strut will become locked by a sliding sleeve.
Such a locked strut becomes a single rigid structural support member with improved compressive load bearing strength by virtue of a bridge and abutting faces of opposed inserts. That single strut member, in turn, locks other struts or fixture points in place within separate articulating framework members. (See Collapsible Covering below as one example of such framework.)
Axes of Rotation.
This invention provides two axes of rotation within the double knuckle insert of the foldable strut. In usage my foldable strut cooperates with two additional points of rotation at the outboard ends of the two strut portions. These outboard axes of rotation, or pivot points, are also the structural connecting points to a collapsible, skeletal framework. When a folding strut is extended and sleeve locked in place, both outboard axes of rotation become fixed by triangular geometry.
Collapsible Covering.
A generic term which includes awnings, bimini tops, dodgers, and other stretched coverings usually but not limited to weather exposed applications. A marine covering, by design, is taut when fixed in place over a rigid framework, generally of cylindrical tubing construction.
In marine applications such a framework is often pinned for a forward collapsing, articulating motion, and when opened, is held upward and rigid by straps in tension in the prior art. This articulating framework is usually configured with one or more crossway structural bows which have been inserted through stitched sleeves in a canvas or vinyl covering.
Installation Play
In marine applications a bow may spread across the deck of a small craft to which it is attached and have supports associated with the bow and the rest of the craft's weather covering. Installation of such struts requires a small amount of longitudinal over play to avoid any binding of the strut when the frame is being folded. This installation over play is sometimes referred to as “wobble” and is on the order of one-half an inch or so. Without some installation latitude, not only would the installation be difficult, but worse still the joint in certain geometries would have a tendency to bind during frame folding.
Bimini Top.
A canvas or synthetic covering stretched tautly over a skeletal framework. A temporary convertible covering usually positioned over an outside steering station on a powerboat or yacht.
Dodger.
A weather covering of canvas-like material stretched tautly over a curved, tubular framework on a dodger becomes a temporary convertible covering over the forward portion of a sailboat cockpit and affords weather protection to both the steering station and the companionway entrance. Given the more limited deck space of a sailboat compared to a power yacht, dodgers are shaped and fitted to attempt optimization of weather protection and entrance/egress.
BACKGROUND OF THE INVENTION
Articulating struts are well known and find many uses. Often such struts are manufactured in place as part of a customized larger equipment piece. Typical examples abound in the aircraft, space and marine and recreational industry. Often such struts employ many moving parts and are unusually complex for what—on the surface, or to a casual observer—is a seemingly simple and straightforward application. An aftermarket in these various technical disciplines exists, and such an aftermarket calls for field installable struts.
The marine recreation world, for example, broadly involves both sail and power boats. Such craft use canvas or synthetic fabric-covered apparatus extensively for protection from sun and rain. On power boats, these coverings are known generically as bimini tops and usually cover a substantial portion of a deck or outside steering station such as a flying bridge. Depending on weather conditions, these bimini tops are preferably foldable and collapsible, usually in a forward direction, such that an operator may raise or lower the covering for personal preference.
In the sailboat world, similar but smaller coverings—called dodgers—are used in much the same general fashion as the bimini tops. Sizes and shapes vary from boat to boat dependin

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Anti-pinch knuckle for bidirectional sleeve does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Anti-pinch knuckle for bidirectional sleeve, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Anti-pinch knuckle for bidirectional sleeve will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3221712

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.