Drug – bio-affecting and body treating compositions – Immunoglobulin – antiserum – antibody – or antibody fragment,... – Monoclonal antibody or fragment thereof
Reexamination Certificate
2001-05-23
2004-01-06
Smith, Lynette R. F. (Department: 1645)
Drug, bio-affecting and body treating compositions
Immunoglobulin, antiserum, antibody, or antibody fragment,...
Monoclonal antibody or fragment thereof
C424S130100, C424S141100, C530S388100, C530S388260, C530S388600, C530S389100
Reexamination Certificate
active
06673345
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to novel parasite protease genes, proteins encoded by such genes, antibodies raised against such proteins, and protease inhibitors produced using such proteins. Particular proteases of the present invention include astacin metalloendopeptidases and cysteine proteases. The present invention also includes therapeutic compositions comprising such nucleic acid molecules, proteins, antibodies and inhibitors, as well as their use to protect animals from disease caused by parasites, such as by tissue-migrating helminths such as heartworm.
BACKGROUND OF THE INVENTION
Parasite infections in animals, including humans, are typically treated by chemical drugs, because there are essentially no efficacious vaccines available. One disadvantage with chemical drugs is that they must be administered often. For example, dogs susceptible to heartworm are typically treated monthly to maintain protective drug levels. Repeated administration of drugs to treat parasite infections, however, often leads to the development of resistant strains that no longer respond to treatment. Furthermore, many of the chemical drugs are harmful to the animals being treated, and as larger doses become required due to the build up of resistance, the side effects become even greater.
It is particularly difficult to develop vaccines against parasite infections both because of the complexity of the parasite's life cycle and because, while administration of parasites or parasite antigens can lead to the production of a significant antibody response, the immune response is typically not sufficient to protect the animal against infection.
As for most parasites, the life cycle of
Dirofilaria immitis,
the helminth that causes heartworm, includes a variety of life forms, each of which presents different targets, and challenges, for immunization. Adult forms of the parasite are quite large and preferentially inhabit the heart and pulmonary arteries of an animal. Males worms are typically about 12 centimeters (cm) to about 20 cm long and about 0.7 millimeters (mm) to about 0.9 mm wide; female worms are about 25 cm to about 31 cm long and about 1.0 to about 1.3 mm wide. Sexually mature adults, after mating, produce microfilariae which are only about 300 micrometers (&mgr;m) long and about 7 &mgr;m wide. The microfilariae traverse capillary beds and circulate in the vascular system of dogs in concentrations of about 10
3
to about 10
5
microfilariae per milliliter (ml) of blood. One method of demonstrating infection in dogs is to detect the circulating microfilariae.
If dogs are maintained in an insect-free environment, the life cycle of the parasite cannot progress. However, when microfilariae are ingested by female mosquitos during blood feeding on an infected dog, subsequent development of the microfilariae into larvae occurs in the mosquito. The microfilariae go through two larval stages (L1 and L2) and finally become mature third stage larvae (L3) of about 1.1 mm length, which can then be transmitted back to a dog through the bite of the mosquito. It is this L3 stage, therefore, that accounts for the initial infection. As early as three days after infection, the L3 molt to the fourth larval (L4) stage, and subsequently to the fifth stage, or immature adults. The immature adults migrate to the heart and pulmonary arteries, where they mature and reproduce, thus producing the microfilariae in the blood. “Occult” infection with heartworm in dogs is defined as an infection in which no microfilariae can be detected, but the existence of adult heartworms can be determined through thoracic examination.
Both the molting process and tissue migration are likely to involve the action of one or more enzymes, including proteases. Although protease activity has been identified in a number of parasites (including in larval excretory-secretory products) as well as in mammals, there apparently has been no identification of an astacin metalloendopeptidase gene in any parasite or of a cysteine protease gene in any filariid.
Astacin metalloendopeptidases, so-called because of their similarity to the metalloendopeptidase astacin found in crayfish, are a relatively newly recognized class of metalloproteases that have been found in humans, mice and rats as well as apparently in Drosophila fruit flies, Xenopus frogs and sea urchins; see, for example, Gomis-Ruth et al., 1993
, J. Mol. Biol.
229, 945-968; Jiang et al., 1992
, FEBS Letters
312, 110-114; and Dumermuth et al., 1991
, J. Biol. Chem.
266, 21381-21385. Human intestinal and mouse kidney brush border metalloendopeptidases share about 82 percent homology in the amino-terminal 198 amino acids. Both share about 30 percent homology with astacin and with the amino-terminal domain of human bone morphogenetic protein
1
. Members of the astacin family share an extended zinc-binding domain motif, the consensus sequence of which was identified by Dumermuth et al., ibid., as being HEXXHXXGFXHE, denoted SEQ ID NO:37, wherein H is histidine, E is glutamic acid, G is glycine, F is phenylalanine and X can be any amino acid. Gomis-Ruth et al., ibid., define the zinc-binding domain motif as His-Glu-Uaa-Xaa-His-Xaa-Uaa-Gly-Uaa-Xaa-His, denoted SEQ ID NO:38, wherein Uaa is a bulky apolar residue-containing amino acid. Jiang et al., ibid., disclose not only the extended zinc-binding domain motif, which they represent as HEIGHAIGFXHE, denoted SEQ ID NO:39, (italicized letters being strictly conserved) but also two other sequences conserved between astacin metalloendopeptidases, including RXDRD, denoted SEQ ID NO:40, spanning amino acids from about 15 through about 19 and YDYXSIMHY, denoted SEQ ID NO:41, spanning amino acids from about 50 through about 58, assuming that the first histidine in the extended zinc-binding domain motif is amino acid position 1. The three histidines at positions 1, 5 and 11 appear to be responsible for zinc binding as is the tyrosine at position 58. The glutamic acid at position 2 is responsible for catalysis. Other key amino acids include the glycine at position 8 which is involved in secondary structure and the glutamic acid at position 12 which forms a salt bridge with the amino-terminus of the mature enzyme.
Consensus sequences, particularly around the active sites, have also been identified for serine and cysteine proteases; see, for example, Sakanari et al., 1989,
Proc. Natl. Acad. Sci. USA
86, 4863-4867. Although cysteine protease genes have been isolated from several mammalian sources and from the nematodes
Haemonchus contortus
(e.g., Pratt et al., 1992,
Mol. Biochem. Parasitol.
51, 209-218) and
Caenorhabditis elegans
(Ray et al., 1992,
Mol. Biochem. Parasitol.
51, 239-250), the cloning of such genes does not necessarily predict that the cloning of novel cysteine protease genes will be straight-forward, particularly since the sequences shared by different cysteine proteases are such that probes and primers based on the consensus sequences are highly degenerative.
Heartworm not only is a major problem in dogs, which typically are unable to develop immunity after infection (i.e., dogs can become reinfected even after being cured by chemotherapy), but is also becoming increasingly widespread in other companion animals, such as cats and ferrets. Heartworm infections have also been reported in humans. Other parasite infections are also widespread, and all require better treatment, including preventative vaccine programs and/or targeted drug therapies.
SUMMARY OF THE INVENTION
One embodiment of the present invention is an isolated parasite nucleic acid molecule capable of hybridizing, under stringent conditions, with a
Dirofilaria immitis
astacin metalloendopeptidase gene. Such a nucleic acid molecule, namely a parasite astacin metalloendopeptidase nucleic acid molecule, can include a regulatory region of a parasite astacin metalloendopeptidase gene and/or encode at least a portion of a parasite astacin metalloendopeptidase protein.
A preferred nucleic acid molecule of the present invention includes at least a
Frank Glenn Robert
Grieve Robert B.
Tripp Cynthia Ann
Heska Corporation
Sheridan Rose P.C.
Smith Lynette R. F.
Zeman Robert A.
LandOfFree
Anti-parasite astacin metalloendopeptidase antibodies does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Anti-parasite astacin metalloendopeptidase antibodies, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Anti-parasite astacin metalloendopeptidase antibodies will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3192418