Drug – bio-affecting and body treating compositions – Anti-perspirants or perspiration deodorants
Reexamination Certificate
2001-01-17
2004-09-21
Pak, John (Department: 1616)
Drug, bio-affecting and body treating compositions
Anti-perspirants or perspiration deodorants
C424S045000, C424S047000, C424S401000, C424S405000, C424SDIG006, C514S566000, C514S724000, C514S739000
Reexamination Certificate
active
06793914
ABSTRACT:
FIELD OF INVENTION
This invention relates to the field of anti-microbial compositions and to methods of reducing microbial numbers. In particular, this invention is concerned with reducing microbial numbers upon the surface of the human body or upon articles worn in close proximity thereto, thereby reducing malodour. The compositions and methods involved utilise particular iron (III) chelators as anti-microbial agents in compositions also comprising a short chain alcohol and a solubility promoter. When used on the human body, the compositions and methods of the invention are of greatest benefit when used on the most malodorous areas of the human body, for example the underarm areas or feet.
BACKGROUND
Anti-microbial agents may function by a variety of means. When used upon the human body, such agents may significantly reduce microbial numbers either by reducing perspiration or by directly effecting the micro-organisms on the surface of the body as represented herein by skin. It is with this latter class of agents, often called deodorant agents, that this invention is largely concerned.
Most deodorant agents reduce the number of viable micro-organisms on the surface of the skin. It is well known that sweat is usually odourless until it has been degraded by the skin microflora. Typical deodorants include ethanol and triclosan (2′,4,4′-trichloro,2-hydroxy-diphenyl ether) which is a well known anti-microbial agent. However, the deodorising effect obtained with such deodorants wears off with the passage of time and the microflora progressively recover their numbers.
There is, therefore, a continuing requirement for effective, long lasting deodorant compositions for the market. The problem to be solved is not simply reducing microbial numbers on the body surface; equally important is maintaining low microbial numbers (particularly low bacterial numbers) on the body surface (particularly in the most malodorous areas, eg. the axillae).
Certain iron (III) chelators have previously been incorporated into deodorant compositions. U.S. Pat. No. 4,356,190 (Personal Products Co.) discloses the use of selected aminopolycarboxylic acid compounds for inhibiting the formation of short chain fatty acids by Corynebacterium on the skin surface. For topical application, alkanolamine salts are stated to be preferred. Especially preferred salts are stated to be di- and trialkanolamine salts such as triethanolamine, diethanolamine, and triisopropanolamine salts. It is also stated that a solvent compatible with the system in which the chelator is incorporated may be employed; however, products comprising mixed solvent systems are not disclosed.
WO 97/02010 (Procter and Gamble Co.) discloses the use of chelators selected from the succinic acid, glutaric acid, and phosphonic acid classes as bactericidal compounds.
WO 97/44006 (Ciba Speciality Chemicals Holding, Inc.) claims the use of particular nitrogen-containing complexing agents for the anti-microbial treatment of the skin and of textile fibre materials. Complexing agents mentioned include those formed from neutralising N,N-ethylenediaminedisuccinic acid (EDDS) with ethanolamine or laurylamine. Deodorant compositions comprising EDDS, ethanol, and water are also disclosed. EDDS has an iron (III) binding constant of 10
22
(“Critical Stability Constants, Volume 1: Amino Acids”, p92, Martell and Smith, Plenum Press, 1974.)
WO 97/01360 (Concat Ltd.) claims a method of inhibiting bacterial growth using particular substituted polyaza compounds that show affinity for first transition series elements. It is stated that compatible salts may be formed by neutralisation with inorganic or organic bases, including primary, secondary and tertiary amines, notably ethanolamine, diethanolamine, morpholine, glucamine, N,N-dimethylglucamine, and N-methylglucamine
Other patents indicate that iron (III) chelators can improve the efficacy of particular known anti-microbials. WO 89/12399 (Public Health Research Institute of the City of New York) discloses improved performance of lanthionine-containing bacteriocins in compositions also comprising a iron (III) chelator. WO 97/09974 (Laboratoire Medix) discloses compositions comprising chlorhexidine and a chelator. EP 0019670 B1 (Glyco Chemicals, Inc.) discloses anti-microbial compositions comprising a condensation product of 5,5-dimethyl hydantoin and formaldehyde in combination with a water-soluble chelating agent selected from ethylenediaminetetraacetic acid (EDTA), Inc.) discloses the potentiation of anti-microbial nitroalkanes by aminocarboxylic-type chelating agents. U.S. Pat. No. 5,688,516 (University of Texas System et al) discloses compositions comprising non-glycopeptide anti-microbials (other than vancomycin) in combination with a selection of components, including a chelating agent. WO 99/10017 (University of Texas System et al) discloses a method for controlling the growth of micro-organisms using a chelating agent and an anti-microbial agent. GB 1,420,946 (Beecham Group Ltd.) discloses that the activity of selected phenolic anti-microbials can be vastly increased by certain chelating agents, in particular the disodium salt of EDTA.
SUMMARY OF THE INVENTION
This invention is concerned with the formulation of stable, prolonged activity, anti-microbial compositions. The compositions of the invention comprise an alcohol carrier fluid, an iron (III) chelator having an iron (III) binding constant 10
23
or greater, and a solubility promoter selected from a specific group of materials. The particular iron (III) chelators of the invention lead to prolonged anti-microbial activity upon application. The alcohol carrier fluid and solubility promoter enable the chelator to be formulated into a stable, preferably homogeneous, anti-microbial composition.
The prolonged anti-microbial activity often manifests itself as a long-lasting deodorancy benefit, for example lasting a day. Furthermore, in compositions comprising fragrance material, the anti-microbial activity may manifest itself as enhanced fragrance intensity. The stability of the compositions of the invention is a result of good compatibility between the components—this can also lead to benefits in terms of performance and aesthetics. Preferred compositions of the invention are homogeneous solutions. Such solution compositions have advantages with respect to many of the problems associated with alternative suspension compositions; for example, valve blocking, settling and caking of the suspended solids, and uneven application can all be reduced.
Thus, according to a first aspect of the present invention, there is provided an anti-microbial aerosol composition comprising:
(i) a C
1
to C
4
monohydric alcohol carrier fluid, present at a level of at least 25% by weight of the total composition (excluding any volatile propellant present);
(ii) an iron (III) chelator having an iron (III) binding constant of 10
23
or greater;
(iii) a solubility promoter selected from the group consisting of:
(a) water;
(b) an organic amine;
(c) a polyhydric alcohol or derivative thereof;
(d) a volatile propellant having fluorine-carbon or oxygen-carbon bonds;
(e) any combination of (a) to (d).
According to a second aspect of the present invention, there is provided a method of controlling microbial numbers, said method comprising the application to a substrate of an anti-microbial aerosol composition as provided in accordance with the first aspect of the invention. An application of this aspect of the invention is the control of microbial numbers upon the surface of the human body or upon articles worn in close proximity thereto.
According to a third aspect of the present invention, there is provided a method of inhibiting the generation of malodour comprising the topical application to the human body or to apparel worn in close proximity thereto of a composition as provided in accordance with first aspect of the invention. This method may also be used to deliver enhanced fragrance intensity from a fragrance-containing composition according to the invention.
According to a four
Clarkson Katrin Dagmar
Landa Andrew Sjaak
Makin Stephen Anthony
Volker Axel
Pak John
Stein Kevin J.
Unilever Home & Personal Care USA , division of Conopco, Inc.
LandOfFree
Anti-microbial compositions does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Anti-microbial compositions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Anti-microbial compositions will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3223473