Anti-IgE antibodies and methods of improving polypeptides

Chemistry: natural resins or derivatives; peptides or proteins; – Proteins – i.e. – more than 100 amino acid residues – Blood proteins or globulins – e.g. – proteoglycans – platelet...

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

4241331, 4241351, 4241451, 424810, 436548, 53038825, 530868, A61K 39395, C07K 1642

Patent

active

059945117

ABSTRACT:
The present invention relates to a method for adjusting the affinity of a polypeptide to a target molecule by a combination of steps, including: (1) the identification of aspartyl residues which are prone to isomerization; (2) the substitution of alternative residues and screening the resulting mutants for affinity against the target molecule. In a preferred embodiment, the method of subtituting residues is affinity maturation with phage display (AMPD). In a further preferred embodiment the polypeptide is an antibody and the target molecule is an antigen. In a further preferred embodiment, the antibody is anti-IgE and the target molecule is IgE. In another embodiment, the invention relates to an anti-IgE antibody having improved affinity to IgE.

REFERENCES:
patent: 4275149 (1981-06-01), Litman et al.
patent: 4816567 (1989-03-01), Cabilly et al.
patent: 5534617 (1996-07-01), Cunningham et al.
patent: 5705154 (1998-01-01), Dalie et al.
patent: 5750373 (1998-05-01), Garrard et al.
patent: 5821337 (1998-10-01), Carter et al.
Cacia et al, Biochemistry, 35 (6), 1897-1903, 1996.
Herbert et al, Dictionary of Immunology-3rd Ed, Blackwell Scientific Publications, 1985, p. 77.
Amit et al., "Three-Dimensional Structure of an Antigen-Antibody Complex at 2.8 A Resolution" Science 233:747-753 (Aug. 1986).
Barbas et al., "In vitro evolution of a neutralizing human antibody to human immunodeficiency virus type 1 to enhance affinity and broaden strain cross-reactivity" Proc. Natl. Acad. Sci. USA 91 (9) :3809-3813 (Apr. 26, 1994).
Brennan et al., "Preparation of bispecific antibodies by chemical recombination of monoclonal immunoglobulin G.sub.1 fragments" Science 229:81-83 (Jul. 1985).
Carter et al., "High level escherichia coli expression and production of a bivalent humanized antibody fragment" Bio/Technology 10:163-167 (1992).
Carter et al., "Humanization of an anti-p185.sup.HER2 antibody for human cancer therapy" Proc. Natl. Acad. Sci. 89:4285-4289 (1992).
Champe et al., "Monoclonal antibodies that block the activity of leukocyte function-associated antigen 1 recognize three discrete epitopes in the inserted domain of CD11a" Journal of Biological Chemistry 270:1388-1394 (1995).
Chothia and Lesk, "Canonical structures for the hypervariable regions of immunoglobulins" J. Mol. Biol. 196(4) :901-917 (1987).
Chothia et al., "Domain association in immunoglobulin molecules. The packing of variable domains" Journal of Molecular Biology 186(3):651-663 (Dec. 5, 1985).
Chothia, et al., "Conformations of immunoglobulin hypervariable regions" Nature 342(6252) :877-883 (1989).
Clackson et al., "Making antibody fragments using phage display libraries" Nature 352:624-628 (1991).
Co et al., "Humanized antibodies for antiviral therapy" Proc. Natl. Acad. Sci. USA 88:2869-2873 (Apr. 1991).
Cunningham et al., "Production of an Atrial Natriuretic Peptide Variant that is Specific for Type A Receptor" EMBO Journal 13(11):2508-2515 (1994).
Geiger and Clarke, "Deamidation, isomerization, and racemization at asparaginyl and aspartyl residues in peptides. Succinimide-linked reactions that contribute to protein degradation" Journal of Biological Chemistry 262(2):785-794 (Jan. 15, 1987).
Goding, J.W., "Conjugation of antibodies with fluorochromes: modifications to the standard methods" Journal of Immunological Methods 13(3-4):215-226 (1976).
Hakimi et al., "The .alpha. subunit of the human IgE receptor (FcERI) is sufficient for high affinity IgE binding" Journal of Biological Chemistry 265(36):22079-22081 (1990).
Hawkins et al., "Selection of Phage Antibodies by Binding Affinity Mimicking Affinity Maturation" J. Mol. Biol. 226:889-896 (1992).
Holliger et al., "Diabodies": Small bivalent and bispecific antibody fragments Proc. Natl. Acad. Sci. USA 90:6444-6448 (Jul. 1993).
Jones et al., "Replacing the Complementarity-determining Regions in a Human Antibody with Those From a Mouse" Nature 321:522-525 (May 29, 1986).
Kettleborough et al., "Humanization of a Mouse Monoclonal Antibody by CDR-grafting: the Importance of Framework Residues on Loop Conformation" Protein Engineering 4(7):773-783 (1991).
Kohler et al., "Continuous Cultures of Fused Cells Secreting Antibody of Predefined Specificity" Nature 256:495-497 (Aug. 7, 1975).
Kunkel et al., "Efficient site-directed mutagenesis using uracil-containing DNA" Methods in Enzymology 204:125-139 (1991).
Lowman and Wells, "Affinity maturation of human growth hormone by monovalent phage display" Journal of Molecular Biology 234(3):564-578 (Dec. 5, 1993).
Lowman et al., "Selecting High-Affinity Binding Proteins by Monovalent Phage Display" Biochemistry 30:10832-10838 (1991).
Marks et al., "By-passing immunization: building high affinity human antibodies by chain shuffling" Bio/Technology 10:779-783 (1992).
Marks et al., "By-passing immunization: human antibodies from V-gene libraries displayed on phage" J. Mol. Biol. 222:581-597 (1991).
McCafferty et al., "Phage antibodies: filamentous phage displaying antibody variable domains" Nature 348:552-554 (1990).
Morimoto et al., "Single-step purification of F(ab').sub.2 fragments of mouse monoclonal antibodies (immunoglobulins G1) by hydrophobic interaction high performance liquid chromatography using TSKgel Phenyl-5PW" Journal of Biochemical and Biophysical Methods 24:107-117 (1992).
Morrison et al., "Chimeric Human Antibody Molecules: Mouse Antigen-binding Domains with Human Constant Region Domains" Proc. Natl. Acad. Sci. USA 81:6851-6855 (Nov. 1984).
Novotny and Haber, "Structural invariants of antigen binding: comparison of immunoglobulin V.sub.L -V.sub.H and V.sub.L -V.sub.L domain dimers" Proc. Natl. Acad. Sci. USA 82(14):4592-4596 (Jul. 1985).
Oliyai and Borchardt, "Chemical pathways of peptide degradation. IV. Pathways, kinetics, and mechanism of degradation of an aspartyl residue in a model hexapeptide" Pharmaceutical Research 10(1):95-102 (Jan. 1993).
Pluckthun, "Antibodies from Escherichia coli" The Pharmacology of Monoclonal Antibodies, Rosenburg and Moore, New York:Springer-Verlag, Chapter 11, vol. 113:269-315 (1994).
Presta et al., "Humanization of an Antibody Directed Against IgE" J. Immunol. 151(5):2623-2632 (Sep. 1, 1993).
Presta, L., "Antibody Engineering" Curr. Op. Struct. Biol. 2:593-596 (1992).
Riechmann et al., "Reshaping Human Antibodies for Therapy" Nature 332:323-327 (Mar. 24, 1988).
Routledge et al., "A Humanized Monovalent CD3 Antibody which Can Activate Homologous Complement" European Journal of Immunology 21:2717-2725 (1991).
Shearman et al., "Construction, Expression and Characterization of Humanized Antibodies Direct Against the Human .alpha./.beta. T Cell Receptor" J. Immunol. 147(12):4366-4373 (Dec. 15, 1991).
Shields et al., "Inhibition of Allergic Reactions with Antibodies to IgE" International Archives of Allergy and Immunology 107(1-3):308-312 (May 1995).
Sims et al., "A Humanized CD18 Antibody Can Block Function Without Cell Destruction" The Journal of Immunology 151(4):2296-2308 (Aug. 1993).
Suresh et al., "Bispecific Monoclonal Antibodies from Hybrid Hybridomas" Methods in Enzymology 121:210-228 (1986).
Tempest et al., "Reshaping a Human Monoclonal Antibody to Inhibit Human Respiratory Syncytial Virus Infection In Vivo" Bio/Technology 9:266-271 (Mar. 1991).
Tutt et al., "Trispecific F(ab').sub.3 Derivatives that Use Cooperative Signaling Via the TCR/CD3 Complex and CD2 to Activate and Redirect Resting Cytotoxic T Cells" J. Immunol. 147(1):60-69 (1991).
Verhoeyen et al., "Reshaping Human Antibodies: Grafting an Antilysozyme Activity" Science 239:1534-1536 (Mar. 25, 1988).
Waterhouse et al., "Combinatorial infection and in vivo recombination: a strategy for making large phage antibody repertoires" Nucleic Acids Research 21:2265-2266 (1993).
Yang et al., "CDR walking mutagenesis for the affinity maturation of a potent human anti-HIV-1 antibody into the picomolar range" Journal of Molecular Biology 254(3):392-403 (Dec. 1, 1995).

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Anti-IgE antibodies and methods of improving polypeptides does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Anti-IgE antibodies and methods of improving polypeptides, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Anti-IgE antibodies and methods of improving polypeptides will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-1674201

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.