Anthrax lethal factor is a MAPK kinase protease

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving hydrolase

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C536S023100, C536S023200, C435S007100, C435S007210, C435S007230, C435S006120

Reexamination Certificate

active

06485925

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to in vitro and ex vivo methods of screening for modulators, homologues, and mimetics of lethal factor mitogen activated protein kinase kinase (MAPKK) protease activity, as well as methods of treating cancer by administering LF to tranformed cells.
BACKGROUND OF THE INVENTION
Anthrax toxin, produced by
Bacillus anthracis
, is composed of three proteins: protective antigen (PA), edema factor (EF), and lethal factor (LF) (Leppla,
Handbook of Natural Toxins
8:543-572 (Moss et al., eds., 1995)). PA alone has no toxic effect upon cells, but instead binds to specific cell surface receptors. Upon proteolytic activation to a 63-kDa fragment (PA63), PA forms a heptameric membrane-inserted channel, which mediates the entry of EF and LF into the cytosol via the endosomal pathway (Gordon et al.,
Infect. Immun
. 56:1066-1069 (1988); Milne et al.,
J. Biol Chem
. 269:20607-20612 (1994)). Thus, EF or LF are toxic to cells when combined with PA.
EF is an adenylate cyclase, and together with PA forms a toxin referred to as edema toxin (Leppla,
Proc. Natl. Acad. Sci. USA
79:3162-3166 (1982)). LF and PA together form a toxin referred to as lethal toxin (“LT”). Until the present discovery, however, the specific activity of LF in the cell was unknown. Lethal toxin is the dominant virulence factor produced by
B. anthracis
and is the major cause of death of infected animals (Pezard et al.,
Infect. Immun
. 59:3472-3477 (1991)). Intravenous injection of lethal toxin causes death of Fisher 344 rats in as little as 38 minutes (Ezzell et al.,
Infect Immun
. 45:761-767 (1984)), and incubation in vitro with mouse macrophages causes lysis in 90-120 minutes (Friediander,
J. Biol Chem
. 261:7123-7126 (1986)).
LF contains a limited sequence homology to a putative zinc-binding site at residues 686-690, HEFGH, characteristic of metalloproteases (Klimpel et al.,
Mol. Microbiol
. 13:1093-1100 (1994)). Substitution of the H or E residues inactivates LF (e.g., as in the recombinant LF mutant E687C) (Klimpel et al., 1994, supra) and decreases its binding of zinc (Klimpel et al., 1994, supra; Kocki et al.,
FEMS Microbiol. Lett
. 124:343-348 (1994)). Certain metalloprotease inhibitors also protect macrophages against lethal toxin (Klimpel et al., 1994, supra; Menard et al.,
Biochem J
. 320:687-691 (1996)). However, no physiological substrate has been identified for LF, and LF protease activity has not been demonstrated.
SUMMARY OF THE INVENTION
The present invention thus identifies anthrax lethal factor (LF) as a protease, which acts as an inhibitor of the mitogen activated protein kinase (MAPK) signal transduction pathway. The present invention also identifies specific substrates for LF protease activity. For example, LF cleaves MAPK kinases 1, 2, and 3 (MEK) at specific sites in their N-termini, thereby preventing activation of MAPK (ERK2). LF is thus useful for inhibition of cancer cells that have an activated MAPK signal transduction pathway. Furthermore, the present invention provides means for assaying in vivo and in vitro for modulators and mimetics of LF, for use in treating cancer.
In one aspect, the present invention provides an in vitro method for screening modulators of lethal factor (LF) mitogen activated protein kinase kinase (MAPKK) protease activity, the method comprising the steps of: (i) providing LF in an aqueous solution, wherein the LF has MAPKK protease activity in the solution; (ii) contacting LF with substances suspected of having the ability to modulate MAPKK protease activity; and (iii) assaying for the level of LF MAPKK protease activity.
In another aspect, the present invention provides a kit for screening in vitro for modulators of lethal factor (LF) mitogen activated protein kinase kinase (MAPKK) protease activity, the kit comprising; (i) a container holding LF, wherein the LF has MAPKK protease activity; and (ii) instructions for assaying for LF MAPKK protease activity.
In another aspect, the present invention provides an in vivo method for screening modulators of lethal factor (LF) mitogen activated protein kinase kinase (MAPKK) protease activity, the method comprising the steps of: (i) contacting a living cell with LF, wherein the LF has MAPKK protease activity; (ii) contacting the cell with substances suspected of having the ability to modulate MAPKK protease activity; and (iii) assaying for the level of LF MAPKK protease activity.
In another aspect, the present invention provides an in vitro method for screening mimetics of lethal factor (LF) having mitogen activated protein kinase kinase (MAPKK) protease activity the method comprising the steps of: (i) providing a compound suspected of being an LF mimetic in an aqueous solution; and (ii) assaying for the level of MAPKK protease activity.
In another aspect, the present invention provides an in vivo method for screening for mimetics of lethal factor (LF) having mitogen activated protein kinase kinase (MAPKK) protease activity, the method comprising the steps of: (i) contacting a living cell with a compound suspected of being an LF mimetic; and (ii) assaying for the level of MAPKK protease activity.
In another aspect, the present invention provides a method for inhibiting proliferation of a cancer cell, the method comprising the step of contacting the cell with LF, wherein the LF has MAPKK protease activity.
In one embodiment, the LF is recombinant. In another embodiment, the MAPKK1 or MAPKK2 is recombinant. In another embodiment, the recombinant MAPKK1 or recombinant MAPKK2 is linked to a detectable moiety.
In one embodiment, the assay is a Mos-induced activation of MAPK assay in a
Xenopus oocyte
. In another embodiment, the assay is an MAPKK1 or MAPKK2 mobility assay. In another embodiment, the assay is an MBP phosphorylation assay.
In one embodiment, the step of contacting the cell comprising transducing the cell with an expression vector encoding LF. In another embodiment, the step of contacting further comprises contacting a cell with LF in the presence of protective antigen (PA). In another embodiment, the PA is a fusion protein targeted to the cancer cell.
In another embodiment, the mitogen activated protein kinase (MAPK) signal transduction pathway is activated in the cell.
In one embodiment, the cell is a human cell. In another embodiment, the cell is a
Xenopus oocyte
. In another embodiment, the cell is a cancer cell. In another embodiment, the cancer cell is from a sarcoma. In another embodiment, the cell is from a transformed cell line. In another embodiment, the cell line is transformed with Ras.
In another aspect, the invention provides methods for reversing a transformed phenotype in a cell by treating the cell with LT. In one embodiment, morphological changes associated with transformation are reversed. In another embodiment, the diffuse pattern of actin distribution that is characteristic of transformed cells is reversed. In another embodiment, the rate and extent of proliferation of a transformed cell is inhibited. In another embodiment, the ability of a transformed cell to grow independently of anchorage to a substrate is reversed.
In another aspect, the invention provides a method for identifying a three-dimensional structure of MAPKK or LF proteins, the method comprising the steps of: (i) receiving input of at least 10 contiguous amino acids of the amino acid sequence of MAPKK or LF, or at least 30 contiguous nucleotides of the nucleotide sequence of a gene encoding MAPKK or LF, and conservatively modified variants thereof; and (ii) generating a three-dimensional structure of the protein encoded by the amino acid sequence.
In one embodiment, the amino acid sequence is a primary structure and the generating step includes the steps of: (i) forming a secondary structure from said primary structure using energy terms encoded by the primary structure; and (ii) forming a tertiary structure from said secondary structure using energy terms encoded by said secondary structure. In another embodiment, the generating step includes the step of forming a quater

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Anthrax lethal factor is a MAPK kinase protease does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Anthrax lethal factor is a MAPK kinase protease, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Anthrax lethal factor is a MAPK kinase protease will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2927213

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.