Prosthesis (i.e. – artificial body members) – parts thereof – or ai – Corporeal artificial heart – heart assist – control...
Reexamination Certificate
1999-01-22
2001-04-24
Nguyen, Dinh X. (Department: 3738)
Prosthesis (i.e., artificial body members), parts thereof, or ai
Corporeal artificial heart, heart assist , control...
C600S016000, C600S017000
Reexamination Certificate
active
06221104
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to surgical methods and apparatus for addressing ischemic cardiomyopathy, and more specifically to methods and apparatus for restoring the architecture and normal function of a mammalian heart.
2. Discussion of the Prior Art
The function of a heart in an animal is primarily to deliver life-supporting oxygenated blood to tissue throughout the body. This function is accomplished in four stages, each relating to a particular chamber of the heart. Initially deoxygenated blood is received in the right auricle of the heart. This deoxygenated blood is pumped by the right ventricle of the heart to the lungs where the blood is oxygenated. The oxygenated blood is initially received in the left auricle of the heart and ultimately pumped by the left ventricle of the heart throughout the body. It can be seen that the left ventricular chamber of the heart is of particular importance in this process as it is relied upon to pump the oxygenated blood initially through a mitral valve into and ultimately throughout the entire vascular system.
A certain percentage of the blood in the left ventricle is pumped during each stroke of the heart. This pumped percentage, commonly referred to as the ejection fraction, is normally about sixty percent. It can be seen that in a heart having a left ventricular volume such as seventy milliliters, an ejection fraction of sixty percent would deliver approximately 42 milliliters of blood into the aorta. A heart with reduced left ventricular volume might have an ejection fraction of only 40% and provide a stroke volume of only 28 millimeters.
Realizing that the heart is part of the body tissue, and the heart muscle also requires oxygenated blood, it can be appreciated that the normal function of the heart is greatly upset by clotting or closure of the coronary arteries. When the coronary arteries are blocked, an associate portion of the heart muscle becomes oxygen-starved and begins to die. This is clinically referred to as a heart attack. Ischemic cardiomyopathy typically occurs as the rest of the heart dilates in an attempt to maintain the heart's output to the body.
As the ischemic area loses its contraction, the area of dilatation is restricted to the remaining muscle. The three regions of typical infraction include, 1) the anterior wall septum and anterolateral wall which are supplied by the anterior descending coronary artery, 2) the septum and inferior wall supplied by the left anterior artery and the right coronary artery which narrows due to the heart's elliptical shape; and 3) the lateral wall supplied by the circumflex artery which perfuses the lateral wall including the papillary muscle attachments to the ventricular wall.
As the ischemic cardiomyopathy progresses, the various structures of the heart are progressively involved including the septum, the apex and the anterolateral wall of the left ventricle. Within a particular wall, the blood starvation begins at the inside of the wall and progresses to the outside of the wall. It can be seen that addressing ischemic cardiomyopathy shortly after the heart attack can limit the detrimental effects to certain elements of the heart structure, as well as the inner most thicknesses of the walls defining those structures.
As a heart muscle is denied blood nourishment support, its ability to participate, let alone aid, in the cardiac pumping function, is greatly diminished and typically nil. Such muscle is commonly referred to as akinetic, meaning it does not move. In some cases the wall will form elastic scar tissue which tends to balloon in response to the pumping action. This muscle tissue is not only akinetic, in that it does not contribute to the pumping function, but it is in fact dyskinetic, in that it detracts from the pumping function.
The akinetic tissue will, in addition to not contracting, cause cardiac enlargement due to dilatation or loss of its contractile capacity. The dilatation will widen, and thereby change the fiber orientation of the remaining muscle in the left ventricle. This will make the ventricle spherical, and change it from the normal elliptical form which optimizes contraction.
The shape of the ventricle is normally elliptical or conical with an apex that allows a 60 degree fiber orientation of the muscle. This orientation ensures efficient development of intramuscular torsion to facilitate the pumping of blood. Compression of the left ventricular cavity occurs by torsional defamation which thickens the left ventricular wall. This increases progressively from the mid-ventricular wall to the apex. As a result, maintenance of the apical anchor is a central theme of cardiac contraction.
Perhaps the most notable symptom of ischemic cardiomyopathy is the reduction in the ejection fraction which may diminish, for example, from a normal sixty percent to only twenty percent. This results clinically in fatigue, and inability to do stressful activities, that require an increase in output of blood from the heart. The normal response of the heart to a reduction in ejection fraction is to increase the size of the ventricle so that the reduced percentage continues to deliver the same amount of oxygenated blood to the body. By way of example, the volume of the left ventricle may double in size. Furthermore, a dilated heart will tend to change its architecture from the normal conical or apical shape, to a generally spherical shape. The output of blood at rest is kept normal, but the capacity to increase output of blood during stress (i.e., exercise, walking) is reduced. Of course, this change in architecture has a dramatic effect on wall thickness, radius, and stress on the heart wall. In particular, it will be noted that absent the normal conical shape, the twisting motion at the apex, which can account for as much as one half of the pumping action, is lost. As a consequence, the more spherical architecture must rely almost totally on the lateral squeezing action to pump blood. This lateral squeezing action is inefficient and very different from the more efficient twisting action of the heart. The change in architecture of the heart will also typically change the structure and ability of the mitral valve to perform its function in the pumping process. Valvular insufficiency can also occur due to dilatation.
A major determinant of both cardiac oxygen requirement and efficiency is based upon a formula where stress or pressure is multiplied by the radius and divided by twice the thickness of the cardiac wall. Increasing stress reduces contractility or rejecting capacity, and raises energy requirements in the remaining contracting muscle. As the shape changes from elliptical to spherical, wall stress increases thereby demanding higher energy from the remaining cardiac muscle. This dilation, which occurs anteriorly, effects the septum, apex and anterolateral wall. Thus, the normally oval apex becomes more spherical due to 1) a loss of infarcted muscle, and 2) dilation of the remaining contracting muscle.
With inferior coronary artery involvement, the inferior wall, septum, and apex are affected. These elements form, naturally a myocardial triangle, with a base adjacent to the mitral valve, and the septum and free lateral walls forming the planes going to the cardiac apex. As the triangle becomes widened, due to loss of contracting muscle after infraction, the same form of ventricular dilatation occurs. However, instead of making the oval ventricle into a sphere in the anterior segment, with subsequent enlargement (dilatation) of the non-infarcted remaining contracting muscle, there is an increase in the triangle inferiorly. As a result, there is an increase in both the transverse diameter as well as the longitudinal dimension. Thus, inferior coronary involvement results in dilatation of the entire inferior segment.
Although the dilated heart may be capable of sustaining life, it is significantly stressed and rapidly approaches a stage where it can no longer pump blood effectively. In this stage, commonly
Athanasuleas Constantine L.
Buckberg Gerald D.
Cor Restore, Inc.
Lyon & Lyon LLP
Nguyen Dinh X.
LandOfFree
Anterior and interior segment cardiac restoration apparatus... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Anterior and interior segment cardiac restoration apparatus..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Anterior and interior segment cardiac restoration apparatus... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2519802