Antenna for automobiles and set of components for the same

Communications: radio wave antennas – Antennas – With vehicle

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C343S718000

Reexamination Certificate

active

06784846

ABSTRACT:

BACKGROUND OF THE INVENTION
The invention herein starts from on an antenna exhibiting the features disclosed in the preamble of claim
1
. An antenna of this type has been known from EP 0 389 705 A2 and features a coaxial coupler comprising an outer conductor, an inner conductor and a plastic supporting body fixing the inner conductor in the outer conductor. Furthermore, such an antenna comprises a radiating element which is connected to the inside of the coupler in an electrically conductive manner. Such an antenna is mounted, for example, with the aid of a base part, to the automobile body panel. A plug fitting said coupler and an antenna cable can be used to connect the receiving device provided in the automobile. For this purpose the automobile's body panel is provided with a bore, which comes into abutment with the edge of the antenna base, thereby creating a connection to ground with the body panel.
Antennas of the above-described type are adjusted to the frequency range in which they are to be used. Different frequency ranges, for example, mobile telephones using the “C” net (450 to 465 MHz), “D” net (890 to 960 MHz), “E” net (1780 to 1920 MHz) or frequencies for navigation systems (Global Positioning System—GPS; 1570 to 1580 MHz) use different antenna configurations. This requires that different components be manufactured and kept in stock.
Furthermore, document DE 44 40 293 C1 discloses an antenna which comprises a sleeve encapsulating a radiating element, whereby an arrangement of a coaxial outer conductor, inner conductor and coupler is anchored to the radiating element.
BRIEF SUMMARY OF THE INVENTION
The invention herein is to solve the problem of finding a method of standardizing the design of antennas of the above-described type and mounting them in a simple manner, despit individual adaptations required by different frequency ranges. The solution of this problem is particularly important considering the cost of antennas, which we supplied to the automobile industry.
In accordance with the invention herein this problem has been solved by the features disclosed in claim
1
. Advantageous developments of the invention herein are disclosed in the subclaims.
The antennas of the invention herein are designed, in particular, for high frequencies, specifically for the “C”, “D” and “E” nets and for the GPS, as well as for future UMTS applications (Universal Mobile Telecommunications Service), which will be using the frequency range of from 1990 to 2200 MHz.
The invention offers the following substantial advantages:
As a result of the fact that the adaptation of the antenna occurs by means of a circuit, which is located on a circuit supporting plate between the radiating element and the inner conductor of the coupler and is connected to the inner conductor of the coupler as well as the radiating element in an electrically conductive manner, the radiating element for the different possible frequency ranges can be configured in a matching manner. Adaptation, in this case, occurs by means of the circuit on the circuit supporting plate, which features external dimensions that can be selected in a manner matching these different frequency ranges. Therefore, the mechanical design of the antenna may remain the same for these different frequency ranges.
As a result of the fact that the circuit supporting plate extends in longitudinal direction of the radiating element, the circuit may form—with a conductor path oriented in longitudinal direction of the radiating element—a component of said radiating element, so that the active length of the latter extends from the inner conductor of the coupler across the circuit supporting plate to the radiating element and, preferably, beyond the latter, into a terminal radiating element part. For safety reasons, this latter radiating element part is preferably flexible. In order to be able to connect the flexible radiating element part with the radiating element, it is practical to configure the radiating element as a socket, into which the flexible radiating element part can be plugged.
Due to the arrangement of the circuit supporting plate in longitudinal direction of the radiating element, it is possible to accommodate the conductor plate, together with the radiating element and the flexible radiating element part in a slender protective sleeve. As a result a particularly appealing appearance of the antenna can be achieved, this being important for its use on automobiles.
As a result of the fact that Me circuit supporting plate is embedded in the supporting element, a particularly compact design is achieved, separate mounting means for the circuit supporting plate are not necessary, and the circuit supporting plate is protected optimally.
By embedding the circuit supporting plate in the supporting element, the connections of the circuit are fixed and durably protected on one side toward the inner conductor of the coupler and on the other side toward the radiating element.
By embedding the circuit supporting plate in the supporting element, the antenna's design is compact and mechanically highly stable.
The circuit supporting plate can be embedded in the plastic part of the supporting element in such a manner that one or two contact surfaces used for making contact with the outer conductor of the coupler are not embedded but exposed. Contact is made with the outer conductor of the coupler in a particularly simple manner because said coupler is configured accordingly and designed to firmly enclose the supporting element of the coupler. In doing so, contact is automatically made—without additional expense—between the contact surface(s) that are not embedded in the plastic material of the supporting element.
The steps required for antenna installation are the same as for antennas that are adapted to different frequency ranges.
The circuit supporting plate can be embedded in the supporting element in a cost-effective manner in that the circuit supporting plate is with the plastic material of the supporting element by injection molding. To achieve this, an injection mold is used, which, for example, is configured in such a manner that the circuit supporting plate with the already affixed inner conductor of the coupler and with the already affixed radiating element is placed in an injection mold or in a composite injection mold.
The radiating element is encapsulated in a sleeve of plastic material and protected against exposure. This sleeve also extends over the coupler and is anchored to the outside of the coupler.
The inner conductor of the coupler and the radiating element may be connected to the circuit on the circuit supporting plate in a conventional manner. In view of the fact that the circuit supporting plate is embedded in the plastic material of the supporting element, it is particularly favorable to rivet or to hammer-tighten the inside conductor of the coupler and the radiating element in a bore of the circuit supporting plate. Respectively, one conductor path leads to said bores; preferably, these bores feature through connections (in particular, copper-coated by electrolytic metal deposition technique), whereby the metal layer provided in the bore is connected to the conductor path, which leads to the bore on the one side or on the other side of the circuit board.
Contact is made between the outside conductor of the coupler and the respective associate contact surface(s) on the circuit supporting plate or board in a particularly simple and reliable manner if the contact surface is located on the edge surface of the circuit supporting plate. The edge surface is understood to be the narrow surface defined by the thickness of the circuit supporting plate extending in a direction transverse to the two main surfaces, whereby said surface encloses the circuit supporting plate on its edge. Said surface directly faces the inner surface of the outer conductor and can therefore be contacted particularly easily. In conjunction with this, it is particularly advantageous if, as preferably intended, the supporting body comprises an exte

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Antenna for automobiles and set of components for the same does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Antenna for automobiles and set of components for the same, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Antenna for automobiles and set of components for the same will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3293882

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.