Antenna drive device and artificial satellite tracking...

Communications: radio wave antennas – Antennas – With means for moving directive antenna for scanning,...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C343S763000, C343S713000

Reexamination Certificate

active

06577281

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to an artificial satellite tracking system which is mounted on a mobile body movable from one place to another place and controls the attitude of a communication antenna such that the antenna is directed to a communication satellite or the like, and more particularly to an X-Y mount type antenna drive mechanism which drives the antenna.
In an antenna supporting mechanism of an antenna drive system for attitude angle control of antenna which is fixedly mounted on the ground or is mounted on a mobile body such as an automobile, the most popular structure is an Azimuth-Elevation (hereinafter abbreviated “AZ-EL”) mount, an X-Z mount or a theodolite which is described on page 194 of “Artificial satellite” written by Hiroshi Tsuru (published by Kogaku Tosho Kabushiki Kaisha in 1983). Alternately, the most popular structure may be a structure called an X-Y mount that is described on page 194 or page 195 of the same literature.
In an artificial satellite having a low elevation angle such as a broadcasting satellite on a geostationary orbit, the communication radio waves are often interrupted in an urban district having many tower buildings so that it is difficult to obtain high-quality communication with less interruption of communication radio waves. The high quality communication can be realized by making use of an artificial satellite having a high elevation angle in the zenith direction (a semi-geostationary orbit artificial satellite such as a semi-zenith artificial satellite or an extended elliptical orbit artificial satellite). However, the conventional tracking system for such an artificial satellite having a high elevation angle has the following tasks.
With respect to the AZ-EL mount of the prior art, in tracking of the artificial satellite in the zenith direction, there has been a drawback that an axial speed in the azimuth angle is increased and hence, the possible tracking range is restricted. However, since no consideration has been paid to the expansion of the possible tracking range, there exists a task that the restriction on an artificial satellite that can be tracked must be removed. Further, an AZ axis (an Azimuth axis) is required to have a rotational angle of not less than 360 degrees and hence, a rotary-type wave guide for transmitting transmission/reception signals from an antenna to a mobile body becomes necessary. However, no consideration has been paid to the quality of the signal transmission such that the rotary-type wave guide has a large transmission loss and further no small-sized and light-weighted wave guide that can transmit two ways comprised of transmission and reception has been developed. Accordingly, there exists a task that the transmission loss must be reduced.
On the other hand, with respect to the X-Y mount of the prior art, when the artificial satellite passes in the vicinity of the zenith, a situation that the axial speed in the azimuth angle is extremely increased as in the case of the AZ-EL mount can be obviated. Accordingly, this X-Y mount is applicable to the continuous tracking of an artificial satellite disposed at a position having a large elevation angle.
However, in the oscillating axes arrangement of the X-Y mount of the prior art, since the oscillating rotary center axes of an X axis and a Y axis are not present on a same plane, a drive mechanism such as a drive motor for the Y axis is inevitably mounted above a rotary mechanism relevant to the X axis so that it gives rise to a so-called two-storied constitution. Accordingly, a mechanical portion becomes large-sized and hence, when the mechanical portion is mounted on a mobile body, the maximum vehicle height becomes high and an antenna may largely extend from the vehicle width depending on the axial direction. Accordingly, it is often the case that an antenna portion is accommodated in the mobile body when the mobile body is traveling and the antenna is extended and used when the mobile body is stopped. Further, no consideration has been made with respect to enabling the tracking of an artificial satellite by the mobile body during the traveling and hence, there exists a task that the mechanism must be small-sized and light-weighted. To consider the fact that the mechanism is mounted on the mobile body, two points are important. That is, the height of the device is important from the viewpoint of the wind pressure and the traveling stability and the weight of the device is important in view of the withstanding load of a ceiling of the mobile body.
SUMMARY OF THE INVENTION
Provided that the antenna per se is not changed, by reviewing the constitution and the arrangement of drive systems such as drive motors for operating the antenna and the weight balancing of members provided for mounting them, it becomes possible to make the device small-sized and light-weighted.
It is an object of the present invention to make a mechanical system small-sized and light-weighted by optimizing the constitution, the arrangement and the weight balancing of a drive system of an antenna mechanism for supporting transmission/reception antennas whereby a high quality communication can be realized by tracking a semi-geostationary orbit artificial satellite such as an extended elliptical orbit artificial satellite or a semi-zenith artificial satellite from a traveling mobile body.
To achieve the above-mentioned object, in an X-Y mount type antenna drive device comprising an antenna portion which includes an antenna capable of performing at least either one of transmission or reception, a fixed supporting portion which supports the antenna portion, and a oscillating mechanism which is disposed between the antenna portion and the fixed supporting portion and has rotational degrees of freedom on an X-Y plane parallel to a plane of the antenna, the antenna drive device further comprises an antenna supporting portion which supports the antenna portion, a first oscillating mechanism portion which oscillates the antenna portion and the antenna supporting portion about a first oscillating axis, and a second oscillating mechanism portion which oscillates the first oscillating mechanism portion relative to the fixed supporting portion about a second oscillating axis, and the center of gravity of the first oscillating mechanism portion is disposed in the vicinity of an oscillating center line of the second oscillating axis. Due to such a constitution, the center of gravity of the first oscillating mechanism approaches the oscillating center axis of the second oscillating mechanism so that the moment of inertia can be reduced whereby it becomes possible to reduce the required torque of drive motors and the size of motors and to make the mechanism portion small-sized and light-weighted. Accordingly, it is preferable to arrange a heavy X-axis motor above the oscillating center axis of the Y-axis.
Further, to achieve the above-mentioned object, the oscillating center axis can be in the same member. Due to such a constitution, if the antenna is supported by two parts such as antenna supporting longitudinal plates connecting an antenna to a first oscillating mechanism portion, the deviation of axis between the antenna supporting longitudinal plates can be eliminated and hence, the shaft strength is increased. Further, since the axial alignment becomes unnecessary, the assembling of the device starting from a base portion becomes facilitated thus enhancing the reliability and maintenance of the device.
Additionally, to achieve the above-mentioned object, adapters disposed between the antenna supporting longitudinal plates of antenna supporting portion and the oscillating center axis may be preferably replaceable. By using the adapters disposed in the midst of the antenna supporting longitudinal plates replaceable, the adjustment of the operating range becomes possible without changing the drive mechanism of X-Y axes or the antenna supporting portion so that the standardization becomes possible and the cost can be reduced.
Further, to achieve the above-mentioned o

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Antenna drive device and artificial satellite tracking... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Antenna drive device and artificial satellite tracking..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Antenna drive device and artificial satellite tracking... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3144353

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.