Antenna configuration for low and medium earth orbit satellites

Communications: radio wave antennas – Antennas – With spaced or external radio wave refractor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C343S91100R

Reexamination Certificate

active

06184838

ABSTRACT:

TECHNICAL FIELD
The present invention relates to space and communications satellites, and more particularly, to an antenna configuration for a multiple beam satellite, suitable for being operated in low or medium earth orbits (LEO/MEO).
BACKGROUND ART
Satellites in geostationary orbits (GSO's) have been widely preferred because of the economic advantages afforded by such orbits. In a geostationary orbit, a satellite traveling above the earth's equator, in the same direction as that in which the earth is rotating, and at the same angular velocity, appears stationary relative to a point on the earth. These satellites are always “in view” at all locations within their service areas, so their utilization efficiency is effectively 100 percent. Antennas on earth need be aimed at a GSO satellite only once; no tracking system is required.
Given the desirability of geostationary satellite orbits and the fact that there are only a finite number of available “slots” in the geostationary “belt,” the latter capacity has been essentially saturated with satellites operating in desirable frequency bands up through the Ku-band (up to 18 GHz). As a result, the government has been auctioning the increasingly scarce remaining slots.
This has encouraged the development of complex and expensive new systems including those using low earth orbits (LEO's), medium earth orbits (MEO's), and higher frequencies, for example, the Ka and V-bands (up to approximately 50 GHz). Growth to higher frequencies is limited by difficult problems of technology and propagation, and expansion in satellite applications requires exploitation of the spatial dimension (i.e., above and below the GSO belt). A host of proposed LEO and MEO systems exemplify this direction.
For LEO satellites, however, larger beams are required at the center of coverage and smaller beams near the edges of the coverage to compensate for the path length differences. In addition, the beams are required to be circular close to the center of coverage and elliptical at the edge of coverage for a uniform cell size on the earth. The different beam requirements increase the complexity of the beam-forming circuitry.
In known satellite systems, signals from each feed are divided into a number of beam portions. Each portion is amplitude and phase weighted using variable active components. The beam portions are then combined to form beams. The feed network for the known systems becomes quite complicated because a large dividing network, a large combining network and large number of variable attenuators and/or variable phase shifters are required. The number of variable attenuators is the product of the number of beams and the number of elements per beam.
Weight, size and power consumption are always a concern with satellite designs. The beam-forming network is complex and thus the weight and size and power consumption are relatively high. It would therefore be desirable to reduce the complexity of the beam-forming network and therefore reduce the size, weight and power consumption of the satellite.
SUMMARY OF THE INVENTION
The present invention is an antenna for a satellite that may use only one feed per beam. It does not require a beam former to generate various size beams. The satellite antenna configuration includes a dielectric lens and a plurality of feed horns positioned appropriately with respect to the lens. The lens has a first surface and a second surface. The lens is common to all beams and is shaped such that it converts an incident spherical wavefront from the feeds to a planar wave front at the exit aperture of the lens. The plurality of feed horns are disposed upon a curved surface. Each of the plurality of feed horns generates a primary beam on the inner surface of the lens, which is phase-corrected by the lens surfaces and creates a secondary beam from the lens outer surface onto the earth. The amplitude and phase distributions at the outer surface of the lens control the secondary beam size and shape. The desired amplitude and phase distributions are achieved by controlling the feed size, its location relative to the lens, and the shape of the lens.
One advantage of the invention is that the use of active components for amplitude and phase weightings is eliminated. Also, the number of uplink and downlink amplifiers is reduced.
Another advantage is that the present invention may also be applied to GEO satellites.
Other advantages and features of the present invention will become apparent when viewed in light of the detailed description of the preferred embodiment when taken in conjunction with the attached drawings and appended claims.


REFERENCES:
patent: 3835469 (1974-09-01), Chen et al.
patent: 5327147 (1994-07-01), Caille et al.
patent: 5821908 (1998-10-01), Sreenivas
patent: 2738549 (1979-03-01), None
patent: 0427470 (1991-05-01), None
patent: 0707356 (1996-04-01), None
patent: 2762936 (1998-11-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Antenna configuration for low and medium earth orbit satellites does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Antenna configuration for low and medium earth orbit satellites, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Antenna configuration for low and medium earth orbit satellites will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2585239

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.