Communications: radio wave antennas – Antennas – With radio cabinet
Reexamination Certificate
1999-11-19
2001-05-29
Ho, Tan (Department: 2821)
Communications: radio wave antennas
Antennas
With radio cabinet
C343S872000, C343S901000
Reexamination Certificate
active
06239756
ABSTRACT:
BACKGROUND OF THE INVENTION
It is increasingly common for wireless communication systems to use digital modulation schemes such as Code Division Multiple Access (CDMA) to establish physical communication channels between a base station and one or more mobile subscriber units. The base station is typically a computer controlled set of transceivers that are interconnected to a land-based public switched telephone network (PSTN). The base station includes an antenna apparatus for sending radio frequency signals to the mobile subscriber units, a direction known as the forward link. The base station antenna is also responsible for receiving reverse link radio frequency signals transmitted from each mobile unit.
Each mobile subscriber unit also contains an antenna apparatus for the reception of the forward link signals and for transmission of the reverse link signals. A typical mobile subscriber unit is a digital cellular telephone handset or a personal computer coupled to a cellular modem. In CDMA cellular systems, multiple mobile subscriber units may transmit and receive signals on the same frequency but with different codes, to permit detection of signals on a per unit basis.
The most common type of antenna used to transmit and receive signals at a mobile subscriber unit is a mono- or omni-pole antenna. This type of antenna consists of a single wire or antenna element that is coupled to a transceiver within the subscriber unit. The transceiver receives reverse link signals to be transmitted from circuitry within the subscriber unit and modulates the signals onto the antenna element at a specific frequency assigned to that subscriber unit. Forward link signals received by the antenna element at a specific frequency are demodulated by the transceiver and supplied to processing circuitry within the subscriber unit.
A second type of antenna which may be used by mobile subscriber units is described in U.S. Pat. No. 5,617,102. The system described therein provides a directional antenna comprising two antenna elements mounted on the outer case of a laptop computer. The system includes a phase shifter attached to the two elements. The phase shifter may be switched on or off in order to effect the phase of signals transmitted or received during communications to and from the computer. By switching the phase shifter on, the antenna transmit pattern may be adapted to a predetermined hemispherical pattern which provides transmit beam pattern areas having a concentrated signal strength or gain. The dual element antenna directs the signal into predetermined quadrants or hemispheres to allow for large changes in orientation relative to the base station while minimizing signal loss.
A third type of antenna which may be used by mobile subscriber units includes multiple antenna elements and a like number of adjustable phase shifters, each respectively coupled to one of the antenna elements. The phase shifters are independently adjustable (i.e., programmable) to affect the phase of respective reverse link signals to be transmitted from the subscriber unit on each of the antenna elements. The antenna apparatus acts as a beamformer for transmission of signals from the subscriber unit and acts as a directive antenna for signals received by the subscriber unit.
While the antenna of the subscriber units allow a user mobility, the antenna apparatus itself can have several shortcomings. Without a protective covering, the antenna elements of the antenna apparatus would be exposed to dust and dirt from the environment. Similarly, a lack of a protective covering or housing for the antenna would expose the antenna to the risk of breakage during transport. Another shortcoming involves the situation where an antenna apparatus unit has multiple antenna which are each fairly long. Such antenna apparatus are not especially convenient for the mobile user to set up and tear down.
SUMMARY OF THE INVENTION
The present invention relates to an antenna assembly for use with a wireless subscriber unit having a housing with a top housing portion and a bottom housing portion and a plurality of antenna elements. In one embodiment, a top portion of the antenna elements are attached to the top housing portion and a bottom portion of the antenna elements are slidably mounted within the bottom housing portion. In another embodiment, a top portion of the antenna elements are attached to the top housing portion and a bottom portion of the antenna elements are fixedly attached to the bottom housing portion. With these embodiments, expanding or collapsing the top and bottom housing portions relative to each other will cause the antenna elements to expand or collapse.
In one embodiment, the antenna assembly has at least one circuit board mounted within the housing. The antenna assembly can include a captive antenna circuit board, a captive modem controller circuit board and a captive transceiver circuit board in an alternate embodiment. In another embodiment, the components which form the captive antenna circuit board, captive modem controller circuit board and captive transceiver circuit board can all be mounted to a single circuit board. The antenna assembly can have at least one port to connect the antenna to an external device, such as a computer or a power source.
The antenna assembly can have a first securing mechanism to secure the top housing portion to the bottom housing portion when the antenna assembly is closed. The antenna assembly can also have a second securing mechanism to secure the top housing portion away from the bottom housing portion when the antenna assembly is opened. When opened, the antenna assembly can allow for the operation of standard cellular and personal communication services (PCS).
When the antenna assembly is closed, the antenna assembly can have a thickness of between 1.25 inches and 1.4 inches. Preferably, the antenna assembly has a thickness of 1.37 inches when closed. The width of the antenna assembly can be between 3.93 and 5.93 inches and can have a preferred width of 4.93 inches.
The plurality of antenna elements can have a plurality of captivating sleeves. In one embodiment, the plurality of antenna elements has five antenna elements. A first antenna, a second antenna, a third antenna and a fourth antenna can be positioned within the housing at locations corresponding to the comers of a square. A fifth antenna can be positioned within the housing at a location corresponding to the center of a square. In an alternate embodiment, the plurality of antenna elements has four elements, each positioned within the housing at locations corresponding to the four comers of a square. In this alternate embodiment, the size of the four antennae is smaller along the longitudinal axis and radial axis, compared to the size of the antennae when the plurality of antenna elements has five antenna elements. The antenna elements can have a range of motion between 0.48 inches and 1.28 inches, with a preferred range of motion of 0.88 inches.
In one embodiment, the antenna elements are continuous rods. In an alternate embodiment, the antenna elements comprise telescoping antenna. In another embodiment, the plurality of antenna elements are made from a flex circuit material. The flex circuit material can be formed into accordion antennae. In this embodiment, the antenna assembly can also have a plurality of support rails.
The invention also relates to a method of operating an antenna assembly for use with a wireless subscriber unit. This method comprises the steps of providing an antenna assembly, expanding the antenna assembly comprising a housing and a plurality of antenna elements, using the antenna assembly with a wireless subscriber unit, and collapsing the antenna assembly.
REFERENCES:
patent: 4475323 (1984-10-01), Schwartzberg et al.
patent: 4593290 (1986-06-01), Wojtowicz
patent: 5196857 (1993-03-01), Chiappetta et al.
patent: 5239793 (1993-08-01), Chiappetta et al.
patent: 5337061 (1994-08-01), Pye et al.
patent: 5561436 (1996-10-01), Phillips
patent: 5561437 (1996-10-01), Phillips et al.
patent: 5572223
Gainey Kenneth M.
Palmer William R.
Proctor, Jr. James A.
Hamilton Brook Smith & Reynolds P.C.
Ho Tan
Tantivy Communications
LandOfFree
Antenna array with housing does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Antenna array with housing, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Antenna array with housing will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2535990