Antenna

Communications: radio wave antennas – Antennas – Spiral or helical type

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C343S702000, C343S821000, C343S859000

Reexamination Certificate

active

06552693

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to an antenna for operation at frequencies in excess of 200 MHz, and to a radio communication system including the antenna.
BACKGROUND OF THE INVENTION
The applicant has disclosed a family of dielectrically-loaded antennas in a number of co-pending patent applications. Common features of the disclosed antennas include a solid cylindrical ceramic core of high relative dielectric constant, a coaxial feeder passing through the core on its axis to a termination at a distal end, a conductive balun sleeve plated on a proximal portion of the core to create an at least approximately balanced feeder termination at the distal end, and a plurality of elongate helical conductor elements plated on the cylindrical surface of the core and extending between, on the one hand, radial connections with the feeder termination on the distal end face, and, on the other hand, the rim of the sleeve.
In one of the co-pending applications, GB-A-2292638, there is disclosed a quadrifilar backfire antenna having four co-extensive helical elements formed as two pairs, the electrical length of the elements of one pair being different from the electrical lengths of the elements of the other pair. This structure has the effect of creating orthogonally phased currents at an operating frequency of, for example, 1575 MHz with the result that the antenna has a cardioid radiation pattern for circularly polarised signals such as those transmitted by the satellites in the GPS (global positional system) satellite constellation.
In GB-A-2309592, the antenna has a single pair of diametrically opposed helical elements forming a twisted loop yielding a radiation pattern which is ommnidirectional with the exception of a null centred on a null axis extending perpendicularly to the cylinder axis of the antenna. This antenna is particularly suitable for use in a portable telephone, and can be dimensioned to have loop resonances at frequencies respectively within the European GSM band (890 to 960 MHz) and the DCS band (1710 to 1880 MHz), for example. Other relevant bands include the American AMPS (842 to 894 MHz) and PCN (1850 to 1990 MHz) bands.
GB-A-2311675 discloses the use of an antenna having the same general structure as that disclosed in GB-A-2292638 in a dual service system such as a combined GPS and mobile telephone system, the antenna being used for GPS reception when resonant in a quadrifilar (circularly polarised) mode, and for telephone signals when resonant in a single-ended (linearly polarised) mode.
SUMMARY OF THE INVENTION
The applicants have found that, by manipulating the diameter of the conductive sleeve encircling the proximal portion of the core, it is possible to produce a resonance which is characterised by a standing wave around the sleeve rim (referred to herein as a “ring resonance”) and which occurs at one of the frequencies used in, for instance, mobile telephones or satellite positioning receivers. The ring resonance is effectively a resonance associated with a circular guide mode or ring mode.
According to a first aspect of the present invention, there is provided an antenna having an operating frequency in excess of 200 MHz, comprising a cylindrical insulative body having a central axis and formed of a solid material which has a relative dielectric constant greater than 5, the outer surface of the body defining a volume the major part of which is occupied by the solid material, a conductive sleeve on the cylindrical surface of the insulative body, a conductive layer on a surface of the body which extends transversely of the axis, the conductive sleeve and layer together forming an open-ended cavity substantially filled with the solid material, and a feeder structure associated with the cavity, wherein the said relative dielectric constant and the dimensions of the cavity are adapted such that the electrical length of its circumference at the open end is substantially equal to a whole number (1, 2, 3, . . . ) of guide wavelengths around the said circumference corresponding to the said operating frequency.
One of the difficulties associated with the known dielectrically loaded quadrifilar backfire antenna referred to above is that the bandwidth of the antenna for circularly polarised signals is relatively narrow. This means that manufacturing tolerances tend to be tight, and the antenna may need to be individually tuned to a required frequency. In an antenna in accordance with the present invention it is possible to arrange for the feeder structure to excite a rotary standing wave around the rim of the cavity at its open end, so as to produce an antenna which is resonant for circularly polarised waves and which has an associated cardioid radiation pattern suitable for receiving signals from satellites when used with its axis vertical. The applicants have found that the bandwidth associated with such a resonance is much wider than the bandwidth of the quadrifilar antenna.
It should be noted that the term “excite” is used in this context as a reference to not only use of the antenna for transmitting signals, but also use of the antenna for receiving signals, since the functional characteristics of the antenna such as its frequency response, radiation pattern, etc. obey the reciprocity rule with respect to corresponding transmitting and receiving characteristics. Similarly, references to elements or parts which “radiate” when used in the context of an antenna for receiving signals should be construed to include elements or parts which absorb energy from the surrounding space but which, by virtue of the reciprocity rule, would radiate if the antenna were to be used for transmission.
One way of exciting circular standing waves in the sleeve is to employ elongate helical or spiral elements on the surface of the insulative body. In effect, the helical elements impart a tangential component of excitation at the sleeve or sleeve rim so that they may be regarded as tangential excitation or feed means. With appropriate choice of dielectric constant and dimensioning of the sleeve and the helical or spiral elements, the antenna can be made to operate as a dual-mode antenna, with a circular polarisation mode associated with the ring resonance, i.e. a standing wave around the rim of the cavity, and a linear mode associated with the loop resonance referred to above in connection with the twisted loop configuration.
Preferably, at the frequency of the ring mode resonance, the helical elements each have an electrical length equal to n&lgr;
g
/4 wherein n is a whole number (1, 2, 3, . . . ) and &lgr;
g
is the guide wavelength along the elements at the frequency of the ring resonance.
In this connection, it will be appreciated by those skilled in the art that “guide wavelength” means the distance represented by a complete wave cycle at the frequency in question along the path used for measurement, i.e. the path along which the wave is guided. In the present case, the measurement path is the respective helical element or the sleeve rim, and the guide wavelength is less than the corresponding wavelength in space by a factor which is governed by the dielectric constant of the core material and by the geometry of the antenna structure. It is to be understood that, with the dielectric constant of the core material being substantially greater than that of free space, the guide wavelength &lgr;
g
around the rim of the sleeve or along the helical elements is much less than the wavelength in free space, but generally not the same in each case. In the case of the rim, the current path is very strongly affected by the dielectric material because the associated fields are largely within the material, whereas the current paths of the helical elements are less strongly affected, being at the boundary between dielectric material and air.
It is possible, then, to produce a multiple-mode antenna suitable particularly, but not exclusively, for circularly polarised signals without using the narrow band quadrifilar structure referred to above. Consequently, a preferred use of the antenna

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Antenna does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Antenna, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Antenna will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3011965

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.