Anionic polymers as toxin binders

Drug – bio-affecting and body treating compositions – Solid synthetic organic polymer as designated organic active...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S078010, C424S078180, C424S078310

Reexamination Certificate

active

06419914

ABSTRACT:

BACKGROUND OF THE INVENTION
Many pathogens produce toxins which are detrimental, and in some cases, lethal, to the host organism. Toxins produced by pathogens can be classified into two general categories, exotoxins and endotoxins.
Exotoxins are generally proteins or polypeptides. These toxins, which are secreted by the pathogen, can travel within the host and cause damage in regions of the host far removed from the infection site. Symptoms associated with exotoxins vary greatly and include hemolysis, systemic shock, destruction of leukocytes, vomiting, paralysis and diarrhea.
Enterotoxins are exotoxins which act on the small intestine and cause massive secretion of fluid into the intestinal lumen, leading to diarrhea. Enterotoxins are produced by a variety of bacteria, including the food-poisoning organisms
Staphylococcus aureus, Clostridium perfringens
, and
Bacillus cereus
, and the intestinal pathogens
Vibrio cholerae, Escherichia coli
, and
Salmonella enteritidis.
Endotoxins are lipopolysaccharides/lipoproteins found in the outer layer of the cell walls of gram-negative bacteria. These lipopolysaccharides are bound to the cell membrane and are released upon cytolysis. Symptoms associated with the release of endotoxins include fever, diarrhea and vomiting. Specifically, endotoxins stimulate host cells to release proteins, endogenous pyrogens, which affect the area of the brain which regulates body temperature. In addition to fever, diarrhea and vomiting, the host animal may experience a rapid decrease in lymphocyte, leukocyte, and platelet numbers, and enter into a general inflammatory state.
Although endotoxins are less toxic than exotoxins, large doses of endotoxins can cause death, generally through hemorrhagic shock and tissue necrosis. Examples of bacteria which produce endotoxins include bacteria of the genera Escherichia, Shigella, and especially Salmonella.
In some cases, the active disease caused by an exotoxin can be treated by administering an antitoxin to the patient. An antitoxin comprises antibodies to the toxin derived from the serum of an animal, typically a horse, which has been immunized by injection of a toxoid, a nontoxic derivative of the toxin. However, the effectiveness of antitoxins is limited because toxins are rapidly taken up by cells and become unavailable to the antibodies. Furthermore, the patient's immune system can respond to foreign proteins present in the antitoxin, creating a condition known as serum sickness.
Therefore, a need exists for an improved method of treating a toxin-mediated condition which significantly reduces or eliminates the above-mentioned problems.
SUMMARY OF THE INVENTION
The present invention relates to a method of inhibiting a toxin in an animal, such as a human, by administering to the animal a therapeutically effective amount of a polymer having a plurality of pendant acid functional groups which are directly attached to the polymer backbone or attached to the polymer backbone by a spacer group. The spacer group can have a length in the range from 0 to about 20 atoms. The toxin is, typically, an exotoxin secreted by a pathogenic microorganism, such as a bacterium.
Suitable acid functional groups include carboxylic acid, sulfonic acid, phosphonic acid, hydrosulfate, hydrophosphate, sulfamic acid and boronic acid groups. The acid groups can also be present in the conjugate base form in combination with a suitable cation.
In one embodiment, the polymer to be administered is a copolymer characterized by a first monomer or repeat unit having a pendant acid functional group and a second monomer or repeat unit having a pendant hydrophobic group. In another embodiment, the polymer is characterized by a monomer or repeat unit having a pendant acid functional group and a pendant hydrophobic group. The polymer to be administered can, optionally, be further characterized by a monomer or repeat unit comprising a neutral hydrophilic group, such as a hydroxyl group or an amide group.
The present method has several advantages. For example, the polymers employed are easily prepared using standard techniques of polymer synthesis and inexpensive starting materials. The polymers will not be substantially degraded in the gastrointestinal tract and, therefore, can be administered orally. Polymer compositions can also be readily varied, to optimize properties such as solubility, water swellability and toxin binding ability.
DETAILED DESCRIPTION OF THE INVENTION
The present invention relates to a method of inhibiting a pathogenic or microbial toxin in a patient, such as a human, by administering to the patient a therapeutically effective amount of a polymer comprising a plurality of pendant acid functional groups. The acid functional group can be directly bonded to the polymer backbone or linked to the polymer backbone by an aliphatic spacer group having a length of from 1 to about 20 atoms.
As used herein the term “inhibiting a microbial toxin” refers to inhibiting the activity of a toxin which is associated with the development of a particular disease state or medical condition. The microbial toxin is an endotoxin or exotoxin produced by a microorganism, such as a bacterium, a fungus or a protozoan. The toxin can be inhibited by any mechanism, including, but not limited to, binding of the toxin by the polymer. As used herein, a “therapeutically effective amount” is an amount sufficient to inhibit or prevent, partially or totally, tissue damage or other symptoms associated with the action of the toxin within or on the body of the patient or to prevent or reduce the further progression of such symptoms.
The term “monomer”, as used herein, refers to both a molecule comprising one or more polymerizable functional groups prior to polymerization, and a repeat unit of a polymer. A copolymer is said to characterized by the presence of two or more different monomers.
As used herein, the term “polymer backbone” or “backbone” refers to that portion of the polymer which is a continuous chain comprising the bonds which are formed between monomers upon polymerization. The composition of the polymer backbone can be described in terms of the identity of the monomers from which it is formed, without regard to the composition of branches, or side chains, off of the polymer backbone. Thus, poly(acrylic acid) is said to have a poly(ethylene) backbone which is substituted with carboxylic acid (—C(O)OH) groups as side chains.
A “pendant” group is a moiety which forms a side chain or a portion of a side chain attached to the polymer backbone. A pendant group can, for example, be bonded directly to one or more atoms within the polymer backbone or can be connected to the polymer backbone by way of a spacer group.
The acid-functionalized monomer comprises a pendant acid functional group, such as a carboxylic acid group, a sulfonic acid group, a hydrosulfate group, a phosphonic acid group, a sulfamic acid group, a hydrophosphate group or a boronic acid group. Acid functional groups are referred to herein as the acid or protonated form. However, it is to be understood that any acid functional group can also exist in the conjugate base or deprotonated form in combination with a pharmaceutically acceptable cation. The polymer to be administered can include acid functional groups in either the protonated form, the deprotonated form or a combination thereof. Suitable cations include alkali metal ions, such as sodium and potassium ions, alkaline earth ions, such as calcium and magnesium ions, transition metal ions and unsubstituted and substituted (primary, secondary, tertiary and quaternary) ammonium ions. In one embodiment, the cation is a polyvalent metal ion, such as Ca
2+
, Mg
2+
, Zn
2+
, Al
3+
, Bi
3+
, Fe
2+
or Fe
3+
.
It is preferred that the polymer is substantially free of acid anhydride groups. For example, less than 5%, preferably less than 2%. More preferably none of the acid functional groups within the polymer are present in the anhydride form.
The acid functional group can be directly bonded to the polymer

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Anionic polymers as toxin binders does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Anionic polymers as toxin binders, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Anionic polymers as toxin binders will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2874842

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.