Anhydrous drug reservoir for electrolytic transdermal...

Surgery – Means for introducing or removing material from body for... – Infrared – visible light – ultraviolet – x-ray or electrical...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C514S772000, C424S449000

Reexamination Certificate

active

06374136

ABSTRACT:

TECHNICAL FIELD
The present invention is directed to a device for delivering an agent transdermally or transmucosally by electrolytic transdermal delivery, and more particularly, to an anhydrous drug reservoir of an electrolytic transdermal delivery device having which can be hydrated just before applying the device to the body, and to a method of producing the same.
BACKGROUND OF THE INVENTION
Iontophoresis, according to Dorland's Illustrated Medical Dictionary, is defined to be “the introduction, by means of electric current, of ions of soluble salts into the tissues of the body for therapeutic purposes.” Iontophoretic devices have been known since the early 1900's. British patent specification No. 410,009 (1934) describes an iontophoretic device which overcame one of the disadvantages of such early devices known to the art at that time, namely the requirement of a special low tension (low voltage) source of current which meant that the patient needed to be immobilized near such source. The device of that British specification was made by forming a galvanic cell from the electrodes and the material containing the medicament or drug to be delivered transdermally. The galvanic cell produced the current necessary for iontophoretically delivering the medicament. This ambulatory device thus permitted iontophoretic drug delivery with substantially less interference with the patient's daily activities.
More recently a number of United States patents have issued in the electrolytic transdermal delivery field, indicating a renewed interest in this mode of drug delivery. For example, U.S. Pat. No. 3,991,755 issued to Vernon et al., U.S. Pat. No. 4,141,359 issued to Jacobsen et al., U.S. Pat. No. 4,398,545 issued to Wilson, and U.S. Pat. No. 4,250,878 issued to Jacobsen disclose examples of iontophoretic devices and some applications thereof. The iontophoresis process has been found to be useful in the transdermal administration of medicaments or drugs including lidocaine hydrochloride, hydrocortisone, fluoride, penicillin, dexamethasone sodium phosphate, insulin and many other drugs. Perhaps the most common use of iontophoresis is in diagnosing cystic fibrosis by delivering pilocarpine salts iontophoretically. The pilocarpine stimulates sweat production; the sweat is then collected and analyzed for its chloride content to detect the presence of the disease.
In presently known iontophoretic devices, at least two electrodes are used. Both of these electrodes are disposed so as to be in intimate electrical contact with some portion of the skin of the body. One electrode, called the active or donor electrode, is the electrode from which the ionic substance, medicament, drug precursor or drug is delivered into the body by iontophoresis. The other electrode, called the counter or return electrode, serves to close the electrical circuit through the body. In conjunction with the patient's skin contacted by the electrodes, the circuit is completed by connection of the electrodes to a source of electrical energy, e.g., a battery. For example, if the ionic substance to be delivered into the body is positively charged (i.e., a cation), then the anode will be the active electrode and the cathode will serve to complete the circuit. If the ionic substance to be delivered is negatively charged (i.e. an anion), then the cathode will be the active electrode and the anode will be the counter electrode.
Alternatively, both the anode and cathode may be used to deliver drugs of opposite charge into the body. In such a case, both electrodes are considered to be active or donor electrodes. For example, the anode can deliver a positively charged ionic substance into the body while the cathode can deliver a negatively charged ionic substance into the body.
It is also known that iontophoretic delivery devices can be used to deliver an uncharged drug or agent into the body. This is accomplished by a process called electroosmosis. Transdermal delivery of neutral compounds by the phenomenon of electroosmosis is described by Hermann Rein in Zeitschrift fur Biologie, Bd. 8 1, pp 125-140 (1924) and the transdermal delivery of non-ionic polypeptides by the phenomenon of electroosmosis is described in Sibalis et al., U.S. Pat. Nos. 4,878,892 and 4,940,456. Electroosmosis is the transdermal flux of a liquid solvent (e.g., the liquid solvent containing the uncharged drug or agent) which is induced by the presence of an electric field imposed across the skin by the donor electrode. Similarly, electrophoresis is the transdermal flux of both the solute and the liquid solvent in an electric field. As used herein, the terms “electrotransport” and “electrolytic transdermal delivery” encompass both the delivery of charged ions as well as the delivery of uncharged molecules by the associated phenomenons of iontophoresis, electroosmosis, and electrophoresis.
Electrotransport delivery devices generally require a reservoir or source of the beneficial agent (which is preferably an ionized or ionizable agent or a precursor of such agent) to be iontophoretically delivered or introduced into the body. Examples of such reservoirs or sources of ionized or ionizable agents include a pouch or cavity as described in the previously mentioned Jacobsen, U.S. Pat. No. 4,250,878, a porous sponge or pad as disclosed in Jacobsen et al., U.S. Pat. No. 4,141,359, or a preformed gel body as described in Webster, U.S. Pat. No. 4,383,529, and Ariura et al., U.S. Pat. No. 4,474,570. Such drug reservoirs are electrically connected to the anode or the cathode of an electrotransport device to provide a fixed or renewable source of one or more desired agents.
Electrotransport delivery devices which are attachable at a skin surface and rely on electrolyte fluids to establish electrical contact with such skin surfaces can be divided into at least two categories. The first category includes those devices which are prepackaged with the liquid electrolyte contained in the electrode receptacle. The second type of device uses drystate electrodes whose receptacles or reservoirs are customarily filled with liquid drug/electrolyte immediately prior to application to the body. With both types of devices, the user currently experiences numerous problems which make their use both inconvenient and problematic.
With respect to the prefilled device, storage is a major concern. Many drugs have poor stability when in solution. Accordingly, the shelf life of prefilled iontophoretic drug delivery devices is unacceptably short. Corrosion of the electrodes and other electrical components is also a potential problem with prefilled devices. For example, the return electrode assembly will usually contain an electrolyte salt such as sodium chloride which over time can cause corrosion of metallic and other electrically conductive materials in the electrode assembly. Leakage is another serious problem with prefilled iontophoretic drug delivery devices. Leakage of drug or electrolyte from the electrode receptacle can result in an inoperative or defective state. Furthermore, such prefilled devices are difficult to apply because the protective seal which covers the electrode opening and retains the fluid within the receptacle cavity must be removed prior to application on the skin. After removal of this protective seal, spillage often occurs in attempting to place the electrode on the skin. Such spillage impairs the desired adhesive contact of the electrode to the skin and also voids a portion of the receptacle cavity. The consequent loss of drug or electrolyte fluid tends to disrupt electrical contact with the electrode plate contained therein and otherwise disrupts the preferred uniform potential gradient to be applied.
Although dry-state electrodes have numerous advantages in ease of storage, several problems remain. For example, the drug and electrolyte receptacles of such a device are conventionally filled through an opening prior to application of the device to the patient's skin. Therefore, the same problem of spillage and loss of drug or electrolyte upon

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Anhydrous drug reservoir for electrolytic transdermal... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Anhydrous drug reservoir for electrolytic transdermal..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Anhydrous drug reservoir for electrolytic transdermal... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2922261

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.