Anhydrous ammonia application device

Planting – Liquid or gas soil treatment – Treating substance includes ammonia

Utility Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Utility Patent

active

06167820

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates in general to chemical applicators for agronomic purposes, and more particularly, to applicators pulled by motorized conveyance across crop production land for injecting anhydrous ammonia gas or liquid into the soil. The anhydrous ammonia is delivered in the form of a gas or liquid and replaces nitrogen that is essential for plant growth.
2. Description of the Prior Art
Since the 1960's, the application of anhydrous ammonia to crop production land between growing seasons has been used to replace essential nitrogen in the soil. The process typically requires a pressurized tank of the anhydrous ammonia in liquid form attached to an applicator which injects the anhydrous ammonia into the soil in gaseous or liquid form. The tank and applicator are trailed over the soil to which the anhydrous ammonia is applied. There, until the soil warms, the nitrogen remains in a relatively stable compound. In the spring, as the soil warms and the fields are tilled and planted, the nitrogen is released in a form usable by plants as a vital nutrient.
The keys to effective anhydrous application are the accuracy and reliability of the components of the anhydrous applicator. Without these traits, the applicator will apply more nitrogen through one injector than another. In that case, a farmer must apply the anhydrous ammonia according to the injector that distributes the least nitrogen or risk crop yield. The variance in the amount of anhydrous ammonia delivered through different injectors can be great. The result of compensating for the lowest flow is over-application of nitrogen to the rest of the field. Not only does this increase the costs of production for the farmer, but increases environmental risks from water run-off as well.
The application devices developed in the 1960's were of a relatively simple design and have remained basically unchanged. A conduit and valve releases the liquid (which becomes gaseous at atmospheric pressure) from a tank into a manifold which, in turn, distributes the ammonia to a plurality of tubes. Each of the tubes is connected to an injector assembly. The assembly consists of a knife which creates a furrow in the soil and an ammonia injector attached just behind the knife which delivers the ammonia into the furrow. Discs attached to the applicator on either side of the injector assembly move soil back into the furrow to help keep the nitrogen sealed in the ground.
To transport the anhydrous ammonia from the manifold to the injector assembly, early models simply used tubes of the length needed to reach each of the ammonia injectors. This resulted in tubes of varying length relative to the injector assembly's position and created a large variation between ammonia injectors of pressure and subsequent volume of ammonia delivered. This situation has been improved by making the tubes of uniform length.
The earlier versions of the manifold have also been improved. The modifications have increased the uniformity of the composition of the gas being delivered through the tubes. The ammonia injectors, on the other hand, have remained essentially unchanged since the early days of anhydrous ammonia application.
Without precise delivery of the ammonia by the injectors, the shortcomings of the applicator are still great enough to be problematic to the user. It is thought that the relative lack of attention to modifying the ammonia injectors is due to the assumption that modification would yield only minimal improvement. This assumption, in turn, is probably due to the temperature and pressure sensitivity of the anhydrous ammonia which function as obstacles to effectively applying the ammonia.
Prior art disclosing ammonia injectors leaves much to be desired. Many of the injectors, mounted on the knives, are made of hollow tubes of metal which are crimped either all along their length or at one end. The open end of the injector is typically a sheared end into which the tube from the manifold delivers the anhydrous ammonia. The delivery end of the injector is typically crimped almost closed or sometimes left completely open. Some ammonia injectors have holes drilled near the delivery end, usually in opposition to each other, which deliver the ammonia to the soil. The injectors are often bent at an angle both to facilitate mounting the injector on the knife and to increase the strength of the injector against the ever-upward pressure of the soil as it is dragged across a field.
A myriad of problems are presented by this design. First, as the ammonia enters the injector, the lip of the sheared end creates turbulence. Second, the unevenly crimped and angled shape creates substantial turbulence and, consequently, the need for higher pressure to get enough ammonia through the tube for proper adherence to the soil. This pressure at the point of injection, in turn, creates some compaction of soil as the ammonia hits it and reduces the degree of penetration of the ammonia into the soil.
In addition, because one ammonia injector may be crimped or angled more than the next, the delivery will differ with each injector. If the delivery end is open or is crimped but not sealed, it often becomes plugged with dirt or mud during use; also, if the end is crimped but not completely sealed, it leaks. The leak of one ammonia injector can be much greater than another since the degree of crimping is not uniform. If there are holes near the delivery end of the injector, they are often not precisely drilled creating yet another opportunity for imprecise application. Lastly, the prior art discloses ammonia injectors that must be replaced rather quickly because of wear created by dragging through the soil. The combination of these factors wreak havoc on a farmer's calculations for nitrogen application, and, in turn, negatively effect his bottom line and our environmental health. Accordingly, what is needed is an ammonia injector which applies the anhydrous ammonia precisely and predictably and requires less pressure.
The present invention discloses anhydrous ammonia applicators with precisely formed ammonia injectors having the overall objective to deliver ammonia with far more accuracy than prior art and provide measurable improvement in the predictability and reliability of the application of anhydrous ammonia. More specifically, a first objective of the current invention is to minimize turbulence of the ammonia as it passes through the ammonia injector to the soil and, therefore, to decrease the pressure at which the ammonia must be applied;
A second objective is to significantly increase the uniformity and precision of delivery of the ammonia through the ammonia injectors and the holes in the injectors;
A third objective is to eliminate leaks caused by the crimped, yet unsealed ends of the ammonia injectors;
A fourth and final objective is to increase the tensile strength of the ammonia injector and its useful life.
SUMMARY
The present invention provides an anhydrous ammonia application device with one or more ammonia injectors mounted on the application device to deliver the ammonia precisely and with less pressure; more specifically, the invention resides in the use of an injector that is formed from a smooth, cylindrical metallic tube with a cap on one end and having a precisely formed passage means through which the ammonia is uniformly delivered.
The embodiment of this invention results in advantages not provided by ammonia injectors disclosed in the prior art. The principal advantages of the present invention are that the injector tube provides a smoother and less obstructed conduit through which the ammonia is transported which increases regularity of flow and reduces pressure required; the precisely formed passage means affords far more uniform and accurate means of delivery of the ammonia to the soil; the end cap eliminates leaks and results in increased uniformity of delivery of ammonia across the whole anhydrous applicator, reduces plugging, and extends the lifetime of the injectors.
Other objects,

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Anhydrous ammonia application device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Anhydrous ammonia application device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Anhydrous ammonia application device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2491538

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.