Land vehicles – Skates – Runner type
Reexamination Certificate
2000-05-08
2001-11-20
Swann, J. J. (Department: 3611)
Land vehicles
Skates
Runner type
C280S618000
Reexamination Certificate
active
06318749
ABSTRACT:
BACKGROUND OF THE INVENTION
1) Field of the Invention
This invention relates generally to boot binding mounts for snowboards and more particularly to a boot binding mount which allows for the mounting position of the boot binding to be adjusted prior to riding of the snowboard and during riding of the snowboard permits the boot binding to be moved to a different position on the snowboard when the rider is not riding the snowboard but yet moving on snow.
2) Description of the Prior Art
Snowboarding is a recreational sport that uses a single elongated board to move on the snow rather than the two skis of the sport of skiing when the rider is travelling down an inclined snow covered terrain. The snowboard rider stands on the snowboard so that the rider's feet are positioned substantially perpendicular to the longitudinal center axis of the snowboard which happens also to be the direction of travel. This is a desirable position because the snowboarder is then permitted to maneuver the snowboard by rolling his or her feet back between the heels and balls of his or her feet which changes the impression within the snow and causes the snowboard to turn. The feet of the snowboarder are each mounted within a binding with this binding in turn being mounted on a binding mount that is mounted on the snowboard.
Snowboarders often desire to modify the transverse position of the bindings relative to the snowboard. More advanced snowboarders generally prefer an angle of approximately ninety degrees relative to the longitudinal center axis of the snowboard where beginning snowboarders prefer a forwardly facing angle of about ten to fifteen degrees which results in the binding being positioned seventy-five to eighty degrees relative to the longitudinal center axis of the snowboard. In the past, this adjustment has been accomplished by unbolting and repositioning of the entire binding. Normally, there are several bolts that are used to mount the binding to the snowboard. Each of these bolts have to be disengaged and the binding readjusted and then the bolts reengaged. This is a cumbersome and time consuming procedure.
At the present time, the vast majority of snowboard usage is by means of renting the snowboards. During the rental procedure, the rental operator is almost always required to adjust the particular angular position of the bindings according to the skilled rider. Therefore, the rental operator has no choice but to deal with the cumbersome and time consuming procedure of adjusting the bindings. Also, when the snowboarder is using of the snowboard out on the mountain, at times the snowboarder may want to change the angular position of his or her feet to accommodate to different snow conditions or to accommodate to different snowboarding styles, such as slalom racing, downhill cruising, freestyle acrobatics or jumping. If the snowboard rider wants to change the initially established position of the bindings relative to the snowboard, the snowboard rider has to carry with him or her appropriate tools such as possibly a screwdriver and a wrench in order to remove the mount, adjust its position, and then reinstall the mount. It would be desirable to utilize some form of a quick and easy adjustment that would eliminate this time consuming and cumbersome procedure.
Also, when the snowboarder is not riding of the snowboard but still wishes to maneuver himself or herself over terrain to negotiate lift lines and to get in and out of lift chairs, the fact that the snowboarder is mounted crosswise on the snowboard makes such movements difficult. Normally, the snowboarder disengages the rear foot leaving the forward foot still mounted within the snowboard. As a result, there is an unnatural walking type of movement that results that causes the snowboarder's leg to assume an unnatural position causing stress and strain on the entire leg including the vulnerable ankle and knee joint due to the snowboard being mounted at a transverse angle to the rider's foot. However, snowboarder's of the past have found this procedure to be inconvenient and time consuming. Therefore, it would be desirable to design a mechanism that could disengage and permit the binding of the forward foot on the snowboard to be pivoted so that the longitudinal axis of the binding is in substantial alignment with the longitudinal axis of the board rather than transverse to the board during the time that the snowboarder is maneuvering to and from ski lifts and other times when the snowboard is not being ridden.
Additionally, the prior art type of snowboard boot binding system locates the snowboard in a transverse position when the snowboarder is riding on a chairlift. On a typical chairlift, two, three or four riders sit side-by-side facing the direction travel of the chairlift. Since the front foot is still mounted on the binding, the snowboard extends at a transverse angle to this direction of travel thus interfering with other users of the chairlift as well as inducing an undesirable torque on the rider's leg caused by the weight of the snowboard. The user of a chairlift may be on the chairlift for as many as ten to fifteen minutes. This transverse location of the snowboard results in a rather uncomfortable position for this period of time as well as creating a possible injury due to the unnatural position of the snowboard rider.
SUMMARY OF THE INVENTION
An angularly adjustable snowboard binding mount which has a first embodiment that includes a position altering plate which is fixedly mounted to the snowboard. Mounted in conjunction with the position altering plate is a baseplate. A boot binding is to be fixedly mounted onto the baseplate. A spring biased locking mechanism is to be engageable with a notch formed in the position altering plate to lock the baseplate to the position altering plate. Movement of the locking mechanism to a disconnected position will permit the baseplate to pivot relative to the position altering plate which means that the boot binding, instead of being pointed in a transverse direction relative to the snowboard, is now pointing in a longitudinal direction relative to the snowboard. In the second embodiment of the invention, there is mounted an adjustment plate between the baseplate and the position altering plate. A locking pawl is connectable between the baseplate and the adjustment plate. The adjustment plate, which carries the boot binding, is to be adjustable relative to the baseplate with this adjustment to occur when the position altering plate is fixed relative to the baseplate. This second adjustment is to vary the mounted position of the boot binding on the snowboard to assume an angle between seventy-five degrees and ninety degrees.
The primary objective of the present invention is to construct an angularly adjustable snowboard binding mount which will permit a boot binding to be pivoted from a transverse position on the snowboard to a longitudinally aligned position on the snowboard which will permit the snowboard to be moved in alignment with the direction of travel during the time that the snowboard rider is moving to chairlifts.
Another objective of the present invention is to construct an angularly adjustable snowboard binding mount which will permit for a quick and easy adjustment of the initial mounting position of the boot binding on the snowboard which will eliminate the unbolting and repositioning procedure of a conventional mounting arrangement for a boot binding on a snowboard.
REFERENCES:
patent: 4728116 (1988-03-01), Hill
patent: 5044654 (1991-09-01), Meyer
patent: 5354088 (1994-10-01), Vetter et al.
patent: 5499837 (1996-03-01), Hale et al.
patent: 5553883 (1996-09-01), Erb
patent: 5564719 (1996-10-01), Kisselmann
patent: 5577755 (1996-11-01), Metzger et al.
patent: 5584492 (1996-12-01), Fardie
patent: 5586779 (1996-12-01), Dawes et al.
patent: 5667237 (1997-09-01), Laver
patent: 5732959 (1998-03-01), Soejima
patent: 5762358 (1998-06-01), Hale
patent: 5765853 (1998-06-01), Erb
patent: 5791678 (1998-08-01), Perlman
patent: 5820139 (1998-10-01), Grindl
Eglitis Imants
Papajohn Christopher G.
Bottorff Christopher
Munro Jack C.
Swann J. J.
LandOfFree
Angularly adjustable snowboard binding mount does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Angularly adjustable snowboard binding mount, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Angularly adjustable snowboard binding mount will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2615897