Angular velocity sensor

Measuring and testing – Speed – velocity – or acceleration – Angular rate using gyroscopic or coriolis effect

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

310311, 310370, G01P 900

Patent

active

058249001

DESCRIPTION:

BRIEF SUMMARY
TECHNICAL FIELD

The present invention relates to an angular velocity sensor used in position control or navigation system of a mobile body such as aircraft, automobile, ship, and vehicle, or in a system for preventing shake of camera or video camera, remote control of audio and video appliances, or personal computer, or detection of rotating motion.


BACKGROUND ART

Various forms of angular velocity sensors have been known hitherto, and from the viewpoint that the entire tuning fork is formed of a ceramic piezoelectric element, as prior art, Japanese Laid-open Patent 3-120415 discloses an oscillating gyro integrally forming two rectangular arms, and a base portion for mutually coupling these arms at their lower ends from a piezoelectric material to form the entire shape into a form of a tuning fork, with the base portion polarized in the direction of Y-axis.
This conventional angular velocity sensor is described below by reference to the drawing.
FIG. 32 is a perspective view of a single-shape tuning fork disclosed in Japanese Laid-open Patent 3-120415.
Directions of polarization are orthogonal, with the base portion in the direction of Y-axis and the driving side oscillating arms in the direction of X-axis. Driving electrodes 3, 4 are partial electrodes of about half of the oscillating arms, and the driving force is 2/8 times as seen from the use of the entire four sides.
Besides, by Corioli's force, the oscillating arms 1, 2 are bent and oscillated in reverse phases in the X-direction, so that a torsional moment about the Y-axis occurs on the base portion 5. Detecting electrodes 6, 7 are to detect torsional oscillation of the base portion 5, and are high in resonance frequency and low in output sensitivity.
Reference numeral 1 is a driving side oscillating arm, and 2 is a monitor oscillating arm for oscillating stably, and the direction of polarization, which is not indicated herein, is supposed to be in the X-direction considering from the function.
In FIG. 32, however, the role functions are divides, that is, the oscillating arms 1, 2 are used for driving, and the base portion 5 for detecting, and although it is only estimation because the mounting or holding method of the base portion 5 is not disclosed, it may be predicted that the oscillation forms are complicated by mixing of (1) oscillating components in the base portion 5 due to driving and oscillation (flexural oscillation in mutually reverse phases in Y-direction), (2) oscillating components in the base portion 5 due to flexural oscillations in mutually reverse phases in X-direction at the time of action of Corioli's force, (3) torsional oscillating components about the Y-axis of the base portion 5, and (4) disturbance noise components from the holding portions. Accordingly, the separation circuit of these four oscillating components is complicated. Since the oscillation analysis of the base portion of the tuning fork is not elucidated by the mechanical vibration engineering of today, its control seems to be difficult. Therefore, since vibration separation is difficult, it may cause malfunction as the gyro in practical aspect. In particular, it is influenced by disturbance noise transmitted from the holding portion, and it was hard to apply in automobiles, etc.
The torsional oscillation is higher in resonance frequency and smaller in oscillation amplitude as compared with flexural oscillation of cantilever, and is hence low in sensitivity. Therefore, drop of output sensitivity was a cause of temperature drift (fluctuation of detection value due to ambient temperature changes when the input angular velocity is 0).
Moreover, since the driving electrodes 3, 4 in FIG. 32 are provided to the leading end in the Y-axis direction of the oscillating arms, according to the vibration theory of tuning fork, 20 to 30% of the leading end functions as floating capacity, not contributing to driving force at all, and only acts to pick up electric noise, and therefore the ratio of detected signal to electric system noise (hereinafter called S/N) was worsened.


REFERENCES:
patent: 5691595 (1997-11-01), Tomikawa et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Angular velocity sensor does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Angular velocity sensor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Angular velocity sensor will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-246259

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.