Angular velocity sensor

Measuring and testing – Speed – velocity – or acceleration – Angular rate using gyroscopic or coriolis effect

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

7350402, G01C 1900, G01P 344, G01P 900, G01P 1508

Patent

active

055592910

DESCRIPTION:

BRIEF SUMMARY
TECHNICAL FIELD

This invention relates to an angular velocity sensor which is suitable for use, for example, in detecting turning directions or postures of a motor vehicle or of an aircraft or the like.


BACKGROUND ART

Recently, as for angular velocity sensors of relatively small sizes, many efforts have been directed to the development of vibration type angular velocity sensors. The angular velocity sensors of this type are generally arranged to detect the angular velocity electronically from a displacement of a vibratory member under the influence of Coriolis force which is known to be proportional to the angular velocity, through the use of piezoelectric elements located in association with the vibratory member.
The angular velocity sensors of this nature usually involve a fabrication process of extremely high precision, which is very expensive, for example, a fabrication process utilizing semiconductor fabrication techniques (as proposed in Japanese Patent Laid-open No. Sho61-114123 and Sho61-139719).
In this connection, FIG. 12 illustrates a prior art angular velocity sensor as disclosed in the above-mentioned Japanese Patent Laid-open No. Sho61-139719.
In FIG. 12, indicated at 1 is a silicon substrate structure largely constituted by a lower substrate 1A which is shown on the lower side in that figure, an upper substrate 1B which is located over the lower substrate 1A, and a space 1C which is formed between the two substrates 1A and 1B to permit vibration of a cantilever type support beam 2 as will be described hereinlater.
Denoted at 2 is a thin-walled cantilever support beam which is formed integrally in the upper substrate 1B of the substrate structure 1 by etching technology or the like. The cantilever support beam 2 is fixed at one end, that is, at its base end 2A which is fixedly connected to the upper substrate 1B, and disposed freely at the other end 2B for vibration in upward and downward directions perpendicularly to the face of the substrate 1. Further, a rectangular slot 3 is formed longitudinally and centrally of the cantilever support beam 2 in a base end portion 2A thereof.
The reference 4 denotes an electrode which is formed on the top surface of a fore free end portion 2B of the cantilever support beam 2. The electrode 4 is connected through a lead wire to an oscillator circuit which generates a predetermined frequency signal (both of the lead wire and the oscillator circuit not shown). Upon applying the predetermined frequency signal to the cantilever support beam 2 through the electrode 4, the cantilever support beam 2 is vibrated up and down by the electrostatic force which occurs between the cantilever support beam 2 and the lower substrate 1A.
Designated at 5 are piezoresistance elements which are located on the opposite sides of the slot 3 in a base end portion 2A of the cantilever support beam 2 to detect, by way of a variation in resistance, the degree of stress to which the cantilever support beam 2 is subjected when the substrate structure 1 is put in rotation. Output signals of the piezoresistance elements 5, indicative of the angular velocity in the rotational direction, are fed to a signal processing circuit (not shown).
In case of the prior art angular velocity sensor of the above-described construction, upon applying a predetermined frequency signal from the oscillator circuit through the electrode 4, electrostatic force is produced to vibrate the fore end portion 2B of the cantilever support beam 2 up and down in the vertical direction, for example, at its own resonance frequency. In this vibrating state, if a torque T about a rotational axis O is applied to the substrate structure 1, the cantilever support beam 2 is subjected to a certain degree of torsional strain (stress) under the influence of Coriolis forces F and F'. This rotational strain exerts compressive stress C and tensile stress E on the opposite sides of the slot 3. As a result, the piezoresistance elements 5 produce signals commensurate with the compressive stress C and the tensile stress E, respecti

REFERENCES:
patent: 2544646 (1951-03-01), Barnaby et al.
patent: 4930351 (1990-06-01), Macy et al.
patent: 5025346 (1991-06-01), Tang et al.
patent: 5275047 (1994-01-01), Zabler et al.
patent: 5331853 (1994-07-01), Hulsing, II
patent: 5359893 (1994-11-01), Dunn

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Angular velocity sensor does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Angular velocity sensor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Angular velocity sensor will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-1930077

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.