Angle-independent continuous wave doppler device

Surgery – Diagnostic testing – Detecting nuclear – electromagnetic – or ultrasonic radiation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C600S457000

Reexamination Certificate

active

06346081

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to diagnostic medical devices which utilize ultrasound to determine the direction and speed of a fluid flowing in a vessel, and more particularly to continuous wave Doppler systems for measuring blood flow.
BACKGROUND OF THE INVENTION
The simplest and most widely used Doppler systems to measure blood flow are “CW” (Continuous Wave) Doppler Probes. As shown in
FIG. 1
, a CW Doppler probe consists of two transducers
1
and
2
, one continuously excited by a driving source (transducer
1
), and the other continuously receiving (transducer
2
).
The signals received by the second transducer can only originate where the first transducer's “beam” (the region in space where the first transducer produces acoustic energy) intersects the second transducers “beam” (the region of space from which the transducer is sensitive, analogous to an antenna's beam plot). These “send beams” and “receive beams” are identical for identical transducers by the principle of reciprocity, as is well-know in the state of the art.
In a CW Doppler system, the signal from transducer
2
, the receiving transducer in
FIG. 1
, is filtered so that only signal energy at frequencies that have been Doppler-shifted away from the frequency transmitted by transducer
1
are further processed. One such method is known, where the received signal is heterodyned by the same frequency transmitted and a high-pass filter allows only difference frequencies to be passed. There are a number of such methods that are well-known, and may be found, for example, in “Doppler Ultrasound and Its Use in Clinical Measurement”, by P. Atkinson and J. P. Woodcock, Academic Press, London, 1982. (Electronic circuits for physical embodiments of CW Doppler systems are also shown there.) As is well known, the magnitude of the Doppler shift is related to the velocity of the moving material, e.g. blood, which causes Doppler shifted signals. Also, the power present at a particular frequency is proportional to the amount of transmitted power intercepted by the moving backscattering material and the efficiency of backscattering. For blood, for example, the amount of energy at different frequencies is related to the amount of blood moving at the corresponding velocity in the region where the transmitting and receiving beams coincide. (This region where the beams coincide is often described as the “sensitive region” in CW Doppler systems.)
That only blood moving in the sensitive region produces a signal in CW Doppler systems is both a strength and a liability. It is a strength in that there is no requirement for selecting a “sample gate” as in pulsed wave Doppler systems, but a liability in that the sensitive volume is determined by the beam pattern of the transducers used and their geometrical arrangement, rather than by the setting of a sample gate. The simplicity in use of CW Doppler, as well as the simplicity of the system as a whole, has made CW Doppler a very widely used method of determining motion, in particular that of blood for medical purposes.
A significant drawback of Doppler blood measurement, however, is that the Doppler-shift frequency is proportional to the velocity of the blood multiplied by the cosine of the angle between the velocity vector and the beam. Therefore, Doppler measurements of blood velocity do not give absolute velocity values, but rather only relative values.
It is known that by using two or more beams at known angles to each other to insonate moving blood, two Doppler shift equations may be generated which contain the two unknowns of the velocity of the blood and the angle of the transducer to the velocity. Accordingly, since there are two (or more) equations with two unknowns, using algebra produced the velocity and the angle, independent of the angle of the transducer to the velocity vector.
A number of patents employ variations of this technique using multiple transducers at fixed angles to each other and using pulsed Doppler. Such patents include, U.S. Pat. No. 5,738,097, issued to Beach et al. U.S. Pat. No. 4,062,237 issued to Fox, used CW Doppler instead of pulsed Doppler, by employing multiple sets of transducers that operate at different frequencies from each other. Since each of the above patents disclose methods which demand multiple transducers that require significant electronic and mechanical alignment, these methods have not been found clinically useful.
It is also known that, by using a special transducer, namely a diffracting-grating transducer, multiple beams at known angles to each other may be produced. Commonly assigned U.S. Pat. Nos. 5,488,953 and 5,540,230 issued to the present inventor Vilkomerson, and incorporated herein by reference, disclose such a transducer and teach a method of determining the velocity and angle from these beams originating from the same transducer. Using a diffraction grating transducer structure and the disclosed method allows the velocity to be determined independently of the angle of the transducer to the blood velocity.
However, the system described in the previously mentioned patents still required pulsed Doppler operation, with the attendant need to set a sample gate to the region of interest. In the present invention there is disclosed a method of using diffracting-grating transducers in a CW Doppler system that does not require setting a sample gate, just like conventional CW Doppler systems, but provides angle-independent velocity determination with two transducers. Also disclosed are a number of other useful structures for angle-independent CW Doppler use.
As the previously mentioned patents teach how the information from the multiple beams is used to calculate the velocity of the moving blood (and if required the angle of the transducer to the blood vessel), what will be considered herein is the arrangement of transducers so as to obtain the multiple beam insonation needed to utilize those methods to calculate the blood velocity, but without the need to set a sample gate, i.e. using CW rather than pulsed Doppler.
SUMMARY OF THE INVENTION
A method of using diffracting grating transducers in a CW Doppler system for providing angle independent velocity determination. Such method is accomplished using only two transducers. An apparatus for determining angle-independent velocity comprising diffracting grating transducers operating in CW mode is also disclosed.
A method and apparatus for providing angle-independent CW probe operation obtained without diffraction-grating transducers is also disclosed.
An apparatus for determining the velocity of a fluid flowing through a lumen comprises a first diffraction grating transducer (DGT) responsive to a continuous wave (CW) input and operable in a first mode for producing a first signal beam at a first frequency, and in a second mode for producing a second signal beam at the first frequency; a second diffraction grating transducer (DGT) operating as a receiver and related to the first diffraction grating transducer at a predetermined angle (the “dihedral angle”), the second diffraction grating transducer producing a first receiving beam which intersects the first DGT first beam for receiving a first reflected signal associated with the first signal beam, and for producing a second receiving beam which intersects the first DGT second beam for receiving a second reflected signal associated with the second signal beam; the first beams adapted to intersect in a first predetermined region through which dynamic particles are undergoing velocity analysis, and the second beams adapted to intersect in a second predetermined region through which dynamic particles are undergoing velocity analysis; and electronic circuitry responsive to the first and second reflected signals for comparing with the first frequency to determine the velocity of the fluid.
A method for determining the velocity of a fluid flowing through a luen comprising directing a CW transmitting first diffraction grating transducer toward the lumen; directing a CW receiving second diffraction grating trans

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Angle-independent continuous wave doppler device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Angle-independent continuous wave doppler device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Angle-independent continuous wave doppler device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2982963

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.