Static structures (e.g. – buildings) – Sheetlike element assembled parallel to existing wall,... – For furnace or refrigeration
Reexamination Certificate
1999-12-14
2002-04-23
Friedman, Carl D. (Department: 3635)
Static structures (e.g., buildings)
Sheetlike element assembled parallel to existing wall,...
For furnace or refrigeration
C052S506020, C052S506060, C052S506080, C052S385000, C052S386000, C052S387000
Reexamination Certificate
active
06374563
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates in general to anchoring systems, and more particularly, to an anchoring rail, and an anchorage system and method for attaching lining materials to a substrate or casing. Even more particularly, the present invention relates to an anchor rail and anchorage system for attaching and anchoring ceramic refractory tiles over a metallic process surface of a unit experiencing extreme service conditions, such as a fluidized catalytic cracking (FCC) cyclone or vessel.
BACKGROUND OF THE INVENTION
The use of refractory lining materials, such as monolithic ceramic materials, in high-temperature, severe duty environments is known throughout the petrochemical and refractory industries. For example, ceramics have been used in fluid catalytic cracking (FCC) air grid nozzles, cyclone dustbowls and diplegs, fluffing and stripping steam rings, catalyst withdrawal lines, and the like. They have also been used in burner throats and flue gas diversion tiles in fired heater applications. Erosion tests comparing ceramic materials to more conventional extreme service refractory have shown the ceramics to have about five to ten times, or better, abrasion resistance.
“Insert” installations, such as cyclone cones and diplegs, have presented minimal problems in field applications due in part to, for example, the fact that geometry tends to keep the materials in place, relatively small diameters, etc. However, equipment with larger diameters and flat sections have traditionally been more problematic. This is due in part to problems associated with different coefficients of thermal expansion of the materials of the equipment casing, the anchor, and the refractory tile.
Cyclone linings and other extreme service refractory installations in, for example, FCC units, typically consist of Resco AA-22S, manufactured by Resco Products, Inc. of Norristown, Pa., which is a phosphate-bonded refractory with hex mesh anchoring systems. Numerous alternative castable refractory materials (e.g., Harbison-Walker Coral Plastic, Plibrico Pliram, etc.) have been tested with generally successful results. Although existing lining technology (primarily hex mesh and AA-22S) is fairly simple to install initially, it is difficult and expensive to repair.
Other conventional techniques for attaching ceramic refractory tiles to metallic substrates include, for example, using single imbedded metallic clips welded to attachment studs, using central anchor rails, and using edge-clip/ship-lap designs. Single clip/stud anchoring methods provide a positive attachment but only at one central location for each tile. High tile costs favor using fewer, larger tiles. However, a large tile with a single, centrally located attachment point has several disadvantages. Central anchor rails mandate the ability to slide the tile down the length of the rail, which requires manufacturing tolerances higher than normally associated with fabricated structures. Designs requiring that the tile be able to slide down the length of the centrally located rail also introduce repair difficulties as well. Alternatively, studs protruding from the back of the central anchor rail could pass through holes formed in the metallic substrate. The studs could subsequently be welded to the back of the substrate by depositing weld material into the resulting annular hole. However, this is a difficult fabrication method.
Certain edge-clip/ship-lap designs offer the flexibility of placing a tile and then a clip and so on. However, the edge clip/ship-lap tile design is such that a single edge failure leads to catastrophic failure of the entire lining.
Accordingly, there is a need for a reliable, low-cost solution to the conventional anchor and anchorage system problems that is easy to manufacture, install, maintain, and repair. Similar needs are mirrored in other industries having extreme service processes, such as for example, the petrochemical, refractory, construction, and mining industries.
SUMMARY OF THE INVENTION
The above described problems associated with prior art devices and techniques for securely anchoring ceramic refractory materials to units experiencing extreme service conditions, such as a FCC cyclones or vessels, are overcome by the present invention. The solutions described herein are applicable in other industries in which a refractory and/or erosion lining is needed for use in equipment operating in relatively extreme operation conditions and extreme service locations.
The present invention is directed to an anchoring rail for attaching a ceramic refractory material having a slot formed in each of two opposite sides to a substrate or casing. The anchoring rail includes an elongated web and a retention structure extending from the web. A bottom edge of the web is attached to a process surface of the substrate or casing. Preferably, the retention structure includes a plurality of perpendicularly extending tabs extending from the web and are constructed to fit within and engage a corresponding alignment structure on the ceramic refractory material. Preferably, the tabs are formed extending outward from a top portion of the web alternating between a first direction and a second opposite direction. In addition, the tabs preferably extend in both the first direction and the second opposite direction in a plane that is substantially perpendicular to a plane defined by the web.
The anchor rail is preferably formed by cutting or punching a template of the rail from a piece of sheet metal and then forming the template such that the anchoring rail has a web and alternating perpendicularly extending tabs extending from the web. The tabs preferably have one of a square or a rectangular shape, although other shapes are possible, such as a semi-circular, an elliptic, a dovetail, etc. The bottom edge is constructed to attach to the inner surface of the substrate or casing. The anchor rails are preferably attached to the metallic substrate using conventional welding techniques, such as stitch welding. The preferred alternating recesses formed between tabs helps facilitate the attachment of the anchoring rail to the substrate by allowing a welding apparatus access to the bottom edge of the rail.
The present invention is also directed to an anchorage system for securely attaching lining materials, such as ceramic refractory tiles, to a metallic substrate or casing. The anchorage system includes an anchoring rail, as described herein above, a plurality of ceramic refractory tiles, and a substrate or casing of a unit, piece of equipment, or service location.
According to one embodiment of the invention, the anchor system includes a plurality of anchor rails that are used to attach a ceramic refractory material, such as a plurality of ceramic tiles, to a metallic substrate of casing, such as the inner wall of a FCC cyclone or vessel.
Preferably the substrate or casing is a metallic material. The substrate can include one of a shell, a pressure vessel, a cyclone body, an equipment working surface, an inner diameter, an outer diameter, or any other surface that is exposed to a process characterized by high temperatures and/or high erosion.
The lining material preferably includes a ceramic refractory material, such as ceramic refractory tiles. The anchorage system includes a plurality of tiles arranged adjacently and having an anchoring rail disposed therebetween to locate and anchor the tiles to the process surface of the substrate. The tiles have a top surface that is exposed to the process and a bottom surface that covers the process surface of the substrate. Each tile includes an alignment structure formed in each tile. Preferably, the alignment structure includes a plurality of slots formed in each of two opposite sides of the tile. The slots are formed to receive and connectively engage the tabs of the anchoring rails. Preferably, each slot is an elongated slot that is formed proximate the center of each side and runs substantially the longitudinal length of the tile.
The slots separate each side into an upper tongue and a lowe
Blair Keith E.
Erskine Charles P.
Chavez Patrick J.
Keen Malcolm D.
Mobil Oil Corporation
LandOfFree
Anchoring system for ceramic lining tile does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Anchoring system for ceramic lining tile, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Anchoring system for ceramic lining tile will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2882805