Static structures (e.g. – buildings) – With component having discrete prestressing means – Beam – girder – or truss construction
Patent
1985-04-15
1986-06-03
Friedman, Carl D.
Static structures (e.g., buildings)
With component having discrete prestressing means
Beam, girder, or truss construction
52230, E04C 310
Patent
active
045921814
DESCRIPTION:
BRIEF SUMMARY
The invention starts from an anchoring of freely oscillating tension elements of steel of a dynamically stressed structural component, which tension elements are deflected twice in the anchoring region, having an anchor body with bores running parallel to one another, through which the tension elements are led and are anchored by means of wedge clamps at their ends in spaces of the bores opening conically outwards, supporting means against which the tension elements rest being provided for the deflection region of the anchor body for the purpose of taking-up of deflecting forces, and having a spreader ring for bunching the tension elements exiting from the anchor-body bores and running through the spreader ring.
The anchoring of a taut tension member for heavy loads in a concrete structural component is described in the DE-OS 27 53 112. The part of the tension member lying within the concrete structural component has no bonding to the concrete structural component because it is surrounded by a casing pipe. This part of the tension member can therefore be removed from the concrete structural component after the unloading and disengagement of its anchoring. A later exchangeability of the tension member, which is e.g. a guying cable of a cable-stayed bridge, is thereby made possible if the guying cable has become defective. By means of this solution, however, the breaking damage through deflecting forces acting upon the guying cables is not eliminated, and the fatigue strength of the guying cables is not increased.
The teaching according to CH-PS 541 693 attempts to eliminate these disadvantages. For the purpose of taking up the deflecting forces of the wires running together into a bunch behind the anchor body, supporting means against which the wires rest are inserted in the deflection region of the anchor body. Moreover, these supporting means centre the wires relative to the anchor body in a predetermined position. For this purpose, the supporting means are inserted in the spaces between the wires and the respective bore wall and fill these spaces up. The supporting means consist of a material which is softer than the material of the wires and/or the anchor body. Through this measure, the friction at the deflection locations of the wires is indeed reduced in order largely to avoid a friction and corrosion breakage. The friction and the breakage are not completely eliminated, however, precisely for the reason that the spaces between the wires and the respective bore wall are completely filled up with the supporting means and the wires rest closely against the bore walls over the entire length of the bores, so that they cannot oscillate unhindered.
The most-used solution consists in a filling of the anchoring region bonded frictionally to rods, wires or strands of a suspension cable. Such a grouting anchoring is explained in the DE-OS 26 14 821. In the region of the deflection location at the end of the anchor casing facing the bracing plate, a grouting compound of redistilled zinc or zinc alloys is provided for, which exhibits properties preventing frictional corrosion. The function of such a filling consists in gradually carrying off the force of the rods, wires, or strands so that it reaches the deflection location at the bracing plate no longer, or weakened in a harmless manner. Through this measure, the fatigue strength of the rods, the wires, or the strands is by no means increased.
The anchorings described in the two last-mentioned publications relate only to the deflecting forces arising in the region of an anchor body or a bracing plate and by no means solve problems which are caused by deflecting forces acting on the second deflection location, where the individual tension elements are bunched into one member.
The problem which underlay the invention indicated in patent claim 1 was to provide an anchoring of freely oscillating tension elements of steel of a dynamically stressed structural component which makes it possible that the tension elements going through the bores of the anchor body are not
REFERENCES:
patent: 3866273 (1975-02-01), Brandestini et al.
patent: 4023242 (1977-05-01), Roqueta
Friedman Carl D.
Losinger AG
LandOfFree
Anchoring of freely oscillating tension elements of steel of a d does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Anchoring of freely oscillating tension elements of steel of a d, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Anchoring of freely oscillating tension elements of steel of a d will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-1226570