Anchoring device for use in rock crevices and the like...

Supports – Brackets – Specially mounted or attached

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C248S925000, C482S037000

Reexamination Certificate

active

06736359

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to an anchoring device for use in rock crevices and the like during rock climbing activities and, more particularly, it relates to an anchoring device for use in rock crevices and the like which utilizes directly opposed cams supported on dual parallel axles.
2. Description of the Prior Art
When climbers move over difficult or dangerous terrain, it is highly advisable and common practice to utilize a rope to secure the climbers together and to anchor the rope in slidable manner to the mountain or rock face being climbed. Furthermore, in the interests of safety, it is prudent to obtain a firm anchor to which the rope can be suitably secured.
In the past, numerous devices have been devised to assist climbers in securing ropes to cracks or crevices in rock walls for the purpose of climbing safely. Such anchors can be natural, i.e. rock spikes, flakes, chockstones jammed in cracks, natural rock threads, and the like. With such anchors, a separate loop of rope or webbing is attached to the natural anchor and to which the climbing rope is slidably secured.
As an alternative to natural anchors, artificial anchors can be utilized. Thus, artificial chockstones or nuts are known of a variety of shapes and sizes and which are inserted into cracks or holes in the face being climbed. Pitons, also known, are metal spikes of various shapes and sizes, which can be hammered into cracks or crevices in the rock face. Yet again, it is known to provide bolts, a modified form of piton and which are designed to be hammered into drilled holes in solid rock.
So far as natural anchors are concerned, these have no inherent disadvantage so long as the rock of the face being climbed is firm and not smooth. However, at the start of a climb it is often apparent that there are an insufficient number of natural anchors existing over the whole face. Artificial chockstones provide an efficient anchor especially when placed in an uneven crack, but placing the artificial chockstone in place tends to be somewhat difficult and/or time consuming, and some placements can be dislodged by movement of the climbing rope. When all that is available, where an anchor is needed, is a smooth-side, parallel-sided crack, placement of the chockstones is difficult both to make and to ensure it is secured.
Both pitons and bolts again provide extremely efficient anchors, but with pitons being made of metal they can be heavy and difficult to place. Also, since the removal of pitons can be extremely difficult and as they tend to scar the rock surface, many climbers are unwilling to use them. Similarly, bolts take an appreciable length of time to place and cause a permanent disfiguration of the rock face. Due to these problems, there is an unwillingness among climbers to employ bolts, except as a last resort.
More recently, spring loaded camming devices are used incorporating multiple pivoting cams, which are spring-biased toward an open position to allow placement of these devices securely into cracks and rock crevices of varying size. To position the camming devices, the climber simply pulls a trigger closing the cams until the cams fit within the rock crack or crevice. The climber then releases the trigger and the spring or springs expand forcing the cams against the rock surface. An induced static friction force between the camming device and the rock face counteracts the applied load. Because such devices can be subject to substantial loads in holding a falling climber, it is desirable to construct such anchors in a manner which provides the greatest possible structural integrity of the device.
Spring loaded camming devices revolutionized climbing by allowing climbers to protect parallel-sided cracks in a variety of sizes. Conventional spring loaded camming devices utilizing one or two axles are heavier than similar size chockstones. Single axle spring-loaded camming devices are lighter in weight than double axle spring loaded camming devices. Lightweight spring loaded camming devices are important because a climber can carry more protection devices for a given weight thereby making safer climbing. Expansion range is the maximum minus the minimum crevice size a spring-loaded camming device will tolerate. Double axle spring loaded camming devices have more expansion range than single axle spring-loaded camming devices. Expansion range is important because a spring loaded cam device with a lot of expansion range is more likely to fit into a given size crevice.
Accordingly, there exists a need for an anchoring device for use in rock crevices and the like which sufficiently supports a climber during rock climbing activities. Additionally, a need exists for an anchoring device for use in rock crevices and the like during rock climbing activities which utilizes cams supported on dual parallel axles which would allow the configuration to be lightweight and have a large expansion range.
SUMMARY
The present invention is an anchoring device for use in a rock crevice. The anchoring device is movable from a non-activated position to an activated position within the rock crevice with the rock crevice being defined by a first rock wall and an opposing second rock wall. The anchoring device comprises a first axle member and a first cam rotatable about the first axle member with the first cam having a first side surface, a first bottom surface, and a first contact surface. The first contact surface is contactable with the first rock wall. A second axle member is provided and spaced in a parallel configuration from the first axle member with a second cam rotatable about the second axle member. The second cam has a second side surface, a second bottom surface, and a second contact surface with the second contact surface contactable with the second rock wall wherein the first axle member is closer to the first rock wall than the second axle member and the second axle member is closer to the second rock wall than the first axle member.
In addition, the present invention includes an anchoring device for use in a rock crevice. The anchoring device is movable from a non-activated position to an activated position within the rock crevice with the rock crevice being defined by a first rock wall and an opposing second rock wall. The anchoring device comprises a first axle member and a first cam rotatable about the first axle member with the first cam having a first side surface, a first bottom surface, and a first contact surface. The first contact surface is contactable with the first rock wall. A second axle member is positioned and spaced in a parallel configuration from the first axle member with a second cam rotatable about the second axle member. The second cam has a second side surface, a second bottom surface, and a second contact surface with the second contact surface contactable with the second rock wall wherein in a non-activated position, the first bottom surface of the first cam is free from overlap with the second bottom surface of the second cam.
The present invention further includes a method for securing a climber to a rock face. The method comprises providing a first axle member, positioning a first cam in a first longitudinal rotatable position about the first axle member with the first cam having a first side surface, a first bottom surface, and a first contact surface and the first contact surface contactable with the first rock wall, providing a second axle member spaced in a parallel configuration from the first axle member, and positioning a second cam in a second longitudinal rotatable about the second axle member with the second cam having a second side surface, a second bottom surface, and a second contact surface and the second contact surface contactable with the second rock wall wherein in a non-activated position, the first axle member is closer to the first rock wall than the second axle member and the second axle member is closer to the second rock wall than the first axle member and the first bottom surface of the first cam is free fr

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Anchoring device for use in rock crevices and the like... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Anchoring device for use in rock crevices and the like..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Anchoring device for use in rock crevices and the like... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3208190

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.