Anchoring device for medical apparatus

Surgery – Means for introducing or removing material from body for... – Treating material introduced into or removed from body...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C604S175000, C604S178000, C606S213000, C606S216000

Reexamination Certificate

active

06572587

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to medical devices, and more particularly to medical devices for securing surgical catheters and the like to a patient's skin or tissue to prevent dislodgment.
2. Description of the Prior Art
A variety of apparatus used in human and veterinary medicine must be securely attached to a patient, either internally or to the skin. The methods employed for this vary, but excessive time-consumption, unreliability, expense, and risk of injury mar each of them. An apparatus commonly requiring a secure attachment is a catheter. Catheters (tubes, usually composed of plastic) are commonly inserted into blood vessels to administer fluids, medications, or nutrients, to withdraw blood, to measure pressures within the blood vessel or to allow the passage of various instruments through the vessel (such as a pacemaker wire). Catheters may be inserted into a variety of body cavities as well, such as the chest or abdomen. When a simple catheter is inserted into a small peripheral vein (an ordinary intravenous or “I.V.”), it is generally secured with adhesive tape to the patient's skin adjacent the point of insertion. But most other surgical catheters (i.e. those inserted into arteries, major veins, or body cavities, such as the chest or abdomen) must be more reliably secured. Accidental migration to an undesired location or dislodgment of such a catheter can cause bleeding, infection, collapse of a lung, heart rhythm abnormalities, and other potentially fatal complications. Even if no such complication ensues, such accidental migration or dislodgment requires repositioning or replacing the catheter which wastes time and materials and subjects the patient to further risks and additional trauma and punctures.
Several methods have been used to attempt to secure surgical catheters more reliably. Most commonly, a pair of plastic wings, each having an eyelet, are incorporated into the hub of the catheter. The catheter is inserted into the patient, up to the hub. The operator then passes a needle and thread through one of the eyelets, then through the patient's skin, then ties a knot, cuts the thread and repeats the process on the opposite eyelet.
In some cases the catheter is not designed to be inserted all the way to the hub. Instead it must be inserted to a particular depth determined by the anatomy of a particular patient. In these instances (or in the case of catheters, such as chest tubes, which have no hub) the thread must be cinched tightly around the catheter and sewn through the skin. Alternatively, a catheter-grasping device may be attached anywhere along the length of the catheter. Currently a popular catheter-grasping device consists of two concentric plastic collars, each with a pair of protruding wings, each of which has an eyelet. The inner collar is of pliable plastic and the outer collar is of rigid plastic. After inserting the catheter to the desired depth, the operator slips the inner collar over the protruding portion of the catheter, adjacent the skin. The operator then snaps the outer collar over the inner collar, and then sews the entire assembly in place as described above.
This sewing technique is not entirely reliable-sutures often break, especially if tension must be applied to cinch the catheter. The pressure exerted on the skin both by the sutures and by the apparatus it is securing are highly variable and operator dependent. Too little pressure may result in a loose, floppy attachment which allows the catheter to slide in and out of its insertion site, with the dangerous consequence of introducing germs from the patient's skin into the bloodstream. Too much pressure may cause skin necrosis and breakdown, which may cause a persistent ulcer, infections, and/or the dislodgment of the catheter.
Moreover, sewing is also tedious and time-consuming, particularly when a catheter grasping device is applied. Many small loose parts must be fumbled with (the needle and thread, and the two parts of the catheter-grasping device), multiplying the chances that one of these parts will be dropped off the sterile field and contaminated. Straight needles are generally provided for this purpose because they eliminate the cost of a curved needle and the instrument to hold it (a needle driver), but as a result the skin must be awkwardly pinched, and the suturing process itself is more traumatic. There is also a risk of penetrating too deeply with the needle, and puncturing a vital structure, or even the catheter itself. These problems occur when attempting to attach this type of catheter-grasping device to a patient who is motionless. When the patient is unable or unwilling to remain motionless long enough for the catheter-grasping device to be attached, this procedure becomes even more difficult and prone to error.
After a catheter has been secured, its position is verified with an x-ray (radiograph). If, as often happens, the catheter is found to be in the wrong position, the time wasted is multiplied, as it is then necessary to undo all the above steps and repeat them. Because catheters of this type are often inserted in emergency situations, time is of the essence. An operator wasting time securing a catheter cannot attend to other pressing matters, and may physically interfere with the access of other health-care personnel to the patient.
But the greatest drawback of sewing a catheter in place is the risk of inadvertent needle-stick injury, a risk which is magnified by the degree to which the operator is rushing to complete an emergency procedure. This risk is also magnified by the straight needle provided by almost every kit manufacturer to save the additional cost of a curved needle and needle-driver. Straight needles require more handling by the operator, and they force the operator to place his/her non-dominant hand in harm's way because the operator must pinch up the skin to pass the needle through it. Moreover, every needle used in a medical procedure jeopardizes many people besides the operator-nurses, technicians, custodians, and whoever might come into contact with the needle. In recognition of the risk of lethal, incurable blood-borne diseases such as HIV and Hepatitis C, the recently approved federal Needlestick Safety and Prevention Act mandates the use of safer alternatives to conventional needles wherever possible.
Adhesive-backed platforms (for example, U.S. Pat. Nos. 5,855,591 and 5,833,667 to Bierman) have also been proposed as catheter securing devices, but, for lack of reliability, have not found wide acceptance. The manufacturer's warning with one such device reads as follows: “Catheter should be sutured to the skin in situations where loss of adherence may occur such as: confused patient, unattended central vascular device, extreme diaphoresis or denuded skin.” These conditions are very common. For example, even the sickest patients must occasionally be left unattended for short periods. Thus adhesives are unacceptable, even by the standards of their manufacturer, for catheters in which a high degree of security is required. But even if the reliability of adhesives were not in doubt, they suffer from other serious drawbacks. They cannot be used on patients who are very sweaty or have very thin, fragile skin. Yet patients who require a catheter in a major vessel are generally the most ill-a disproportionately large number of them will be very sweaty. Patients who are elderly and/or have chronic illnesses are also among those most likely to need such a catheter. Yet they often have paper-thin skin which will be torn off when the time comes to remove an adhesive. Various solvents are recommended to help remove the adhesive, but these are harsh materials that may themselves damage fragile skin, even if a nurse is patient enough to carry out the tedious and lengthy process of applying them with a cotton-tipped applicator beneath the leading edge of the platform as it is peeled back bit by bit from the skin.
Various straps have been proposed to secure a catheter to a lim

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Anchoring device for medical apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Anchoring device for medical apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Anchoring device for medical apparatus will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3100312

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.