Anatomic femoral prosthesis for total hip arthroplasty

Prosthesis (i.e. – artificial body members) – parts thereof – or ai – Implantable prosthesis – Bone

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06488716

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a femoral prosthesis to be applied in total hip arthroplasty (THA). More specifically, new femoral prosthesis is a necklocking femoral component. It is anchored on the outside of retention neck and the trochantic bed of the femur and mechanically fastened during the operation.
2. Description of the Prior Art
The human hip joint comprises a socket or an acetabulum and a ball or femoral head. The femoral head is attached to the femur through a neck with reduced diameter and is received within the acetabulum for universal pivotal movement. In natural femur, most of loading force of hip is located on the head and distributed through the hard cortex of the femoral neck. It would be further conducted to the femur cortical bone and the joint of knee. If the femoral head becomes diseased or damaged, it can be replaced with a prosthetic femoral component. About 40 years ago, Prof. Sir John Chamley started a revolution in total hip replacement, a stem hip prosthesis. THA has been a tremendously successful surgical invention for patients with disabling arthritis of the hip. Quality of life is predictably improved following THA.
The implantable hip prostheses used comprise, in basic design, one or two piece(s) including a replacement head and femoral neck attached to an elongated metal stem that is adapted for receipt in a cavity formed in the proximal region of the femur. In practice of THA, the natural femoral head and neck has been completely removed, in order to open a canal on the proximal femur. In that model, most of compression force applied on the prosthetic femoral head would be directly conducted into the intramedullar canal of the proximal femur. Most of them are concentrated on the certain local area of the canal. Various patents of THA have been issued around this idea during past 30-40 years. Most of them have been fused on an improvement on shape of the stem for accurately fitting into intramedullar canal of shaft and a method to form a stable, longlasting prosthesis.
In early prior art, the stem of prosthesis was cemented within the femoral medullar cavity by use of a plastic cement, such as PMMA. After decades of practice, there were several infirmities associated with this kind of prosthesis installation. Typically, the cement would be deteriorated with age. In the meanwhile, the constant cyclic loading applied to the stem of the prosthesis by the action of simple walking causes cement to fracture and break loose from the femoral cavity, thereby requiring another operation to re-fix the prosthesis. Loosening of the cemented implants from canal was a common problem in THA and was being recorded with increasing frequency, leading eventually to the description of a condition called “cement disease”. This “disease” seemed to be found with any of the nearly over 100 different prostheses in use, regardless of the size of the head, the shape of stem, the cementing technique used, or their modularity.
Because of problems associated with cementing a prosthesis hip within the femur, a cementless type of implant procedure had been developed and accepted by the orthopaedic community as a replacement. The cementless hip prosthesis includes a porous coating surface or coating materials, called hydroxyapatite (HA), over the length of the stem, such that natural growing bone after surgery penetrates into the porous surface or HA of the stem, thereby firmly fixing, at least in theory, the femoral stem within the femoral cavity. In general, such procedure requires that the patient would be relatively immobile for a number of weeks following the surgery, in order to allow the bone growth occur and thereafter restrict his physical activity until a firm bound is created. The period of time may involve a full twelve months. Secondly, micro-motion of the implant cannot be avoided in the immediate and early stages after surgery, which, more or less, causes the position or orientation changes of implanted prosthesis. The outcomes from such procedure would be largely depended upon the condition of patient in term of their health condition during the surgery period and activities thereafter. Even that, in best case, this procedure can not completely avoid problems that happened in the cement procedure. In addition, it becomes very difficult to remove a firmly bonded prosthesis, if a failure of prosthesis occurs after surgery. Another downside associated with existing devices and procedures is that, in order to avoid the loosening prosthesis, in prior art, the device has to be as much as perfectly fit into the medullar cavity in term of its orientation, position and the deepness at the medullar canal. From point of view of doctor, they have to spend most time during the surgery to carefully remove bone, which mostly is healthy and functioning, and open a canal in the cancellous bone in term of the precise position, shape and size of canal. It is a time consuming and skilful part in the operation. In fact, for most patients, who needs total hip replacement, their natural neck is functioning and is still in a good shape.
In addition, because design of the stem type devices and its operating procedure of THA would partially alter the structure and functions of the natural femoral system, somehow such surgery would make a damage on proximal femur and affect the growth of bone as well as quality of intact bone. In general, this procedure could not be recommended for young patients (younger than 50 years old), who has a damage on its femoral head, because of concerns about both durability of the prosthesis and most of side-effects and complications appeared in the regular stem type prosthesis, which could lead a need for multiple revisions in their lifetime.
Several previous studies have discovered that major reasons for the vertical migration and subsidence of the femoral component in hip replacement, which causes a likelihood loosening of the device, accurately, are: 1) From point of view of material properties, the cancellous bone is very different from one of cortical bone and metal. For example, the elastic modulus of the cortical bone, cancellous bone and stem (CoCrMo) are 17.3×10
9
, 324.6×10
6
and 196×10
9
(Pa), respectively. In principle, function of the cancellous bone is not for supporting any load at all. Once the cancellous bone contact with hard surface of metal stem and is being loaded with force beyond its physiological limits, the plastic deformation happened, which would accumulate over extended period of time and manifest itself as migration of the prosthesis. 2) There are a change and difference on model of the force loading and distribution on the proximal portion of the femur between the intact femur and implanted stem prosthesis. According to Wolff's law, changes in stress distribution through a bone eventually cause definite alteration in its internal structure. For example, the strain applied on femoral head is transferred along the length of the stem and compression force from femoral head is only focused on a small and local area of the medullas channel, which leads a local plastic deformation of the cancellous bone. 3) The current surgery of THA has generally required removal of entire head and neck portion as well as some hard outer cortical bone, in order to open the intramedullar canal and install the prosthesis. Such surgery causes a lot of anatomical changes on natural system, in term of blood circulation and supply to this area, so that it also leads further physical changes in proximal femur with respect of the bone quality after surgery. Those problems have been recognised for quite some time by orthopaedic community. Obviously, the fact of that problems are associated with the current design of the hip prosthesis, such as aseptic loosening, fatigue fracture, postoperative infection and stress shielding, could directly or indirectly relate to the stem-style design of the prosthesis with respect of the weakness on both biomechanical and physiological outcome

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Anatomic femoral prosthesis for total hip arthroplasty does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Anatomic femoral prosthesis for total hip arthroplasty, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Anatomic femoral prosthesis for total hip arthroplasty will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2949633

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.