Chemistry: analytical and immunological testing – Involving an insoluble carrier for immobilizing immunochemicals
Reexamination Certificate
1998-08-06
2001-01-09
Chin, Christopher L. (Department: 1641)
Chemistry: analytical and immunological testing
Involving an insoluble carrier for immobilizing immunochemicals
C436S514000, C436S164000, C436S165000, C436S069000, C435S004000, C435S007100, C435S007500, C435S007900, C435S007920, C435S287100, C435S287200, C422S051000, C422S051000, C422S051000, C422S067000
Reexamination Certificate
active
06171870
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to analytical test devices and methods useful for analytical assays to determine the presence of analytes in fluid samples. It is especially useful for determining the presence of cardiac analytes in whole blood, although it is not so limited.
BACKGROUND OF THE INVENTION
This invention can be utilized for many diagnostic purposes as well as for following the course of mammalian diseases and therapeutic treatments. It is applicable to many mammalian body fluids such as whole blood, serum, plasma and urine. Although this invention will be principally discussed as applied to detecting cardiac analytes it may also be applicable to other fields where antigen/antibody or equivalent reactions are utilized.
It may, for instance, be employed for pregnancy or fertility testing utilizing antibodies to human chorionic gonadotropin (LCG) or leutinizing hormone (LH) as well as for detection and/or measuring a wide variety of analytes in blood and other body fluids.
A number of immunoassay procedures have recently been developed which utilize reactions taking place on dry porous carriers such as cellular membranes through which samples to be analyzed can flow by capillary action, the reaction products being detectable either visually or with an instrument such as a reflectometer. While not so limited, these procedures generally involve antigen/antibody reactions in which one member of the reactive pair is labelled with a detectable label. Typically, the label is an enzyme label or a particulate direct label, for instance a sol label such as gold. The art is well aware of many useful labels and their method of operation.
Typical immunochromatographic devices of this nature are described in several United States and foreign patents. For example, U.S. Pat. No. 4,861,711 describes a device in which an analyte is detected by antigen/antibody reactions taking place in a series of coplanar membranes in edge to edge contact. Other devices are described in U.S. Pat. Nos. 4,774,192; 4,753,776; 4,933,092; 4,987,065; 5,075,078; 5,120,643; 5,079,142; 5,096,809; 5,110,724; 5,144,890; 5,290,678; 5,591,645; 5,135,716. All of these patents describe laminated structures.
Devices including cellular porous membranes such as those described in the above identified patents are often difficult to manufacture because they are multi-layer and require several layers of porous materials and filtration strips to insure accurate results.
For detection of cardiac analytes in whole blood, it is necessary to remove red blood cells so that they will not interfere with visualizing or otherwise detecting the colored reaction products normally produced in such immunoassay reactions.
Immunoassay devices when employed to detect cardiac analytes in whole blood utilize labelled antibodies which react with these antigens to produce detectable products. One widely utilized method for such diagnostic or analytical procedures utilizing antigen/antibody reactions employs a labelled detector antibody which reacts with one epitope on the antigen to form a labelled antibody/antigen complex formed in a detection zone of a porous membrane strip. The complex moves along the membrane by capillary action until it contacts a fixed line containing a capture antibody with which it reacts at another epitope on the antigen to concentrate and form a detectable reaction product. Typically, the product is visibly detectable because it is colored. With some constructions, the color is apparent to the naked eye. In more sophisticated devices, the presence or concentration of the antigen may be determined by measuring the intensity of the produced color or other property of the product with a suitable instrument, for example an optical sensor. The method is utilized in several devices used to detect cardiac analytes in whole blood. In all of these devices, it is necessary to prevent red blood cells from entering the color development or capture area because they interfere with proper visualization of the colored reaction product because of the intense hue of the cells.
Much effort has been expended to prevent such interference. As a result, products of this nature heretofore proposed for analysis of whole blood include some means, such as a type of filter to remove the red blood cells and form a plasma, so that there is no interference with the visibility of the color which is produced.
U.S. Pat. No. 5,135,716 utilizes an agglutinating agent to assist in the separation of red blood cells. Other patents describe the use of paper or plastic filters.
The use of glass fiber fleece is described in U.S. Pat. No. 4,477,575 to filter the red blood cells. Glass fiber fleece, however, simply adds another layer to the device. The principal difficulties arise from the problems of accurately placing several layers of thin flexible strips in proper registry in a laminar structure while at the same time retaining the sample placement zones, reaction zones and other areas of the membrane strips in proper communication with each other. The problems are further complicated by the difficulties of placing the completed membrane in or on a proper platform which is often a hollow casing with separable upper and lower members including fixed pillars and slots to prevent the membrane from moving and to retain selected membrane areas in proper position relative to viewing windows and other openings in the casing.
As a general rule, diagnostic devices such as those discussed above are often described as having an application zone to which the sample to be analyzed is added. The sample flows to a detection zone. The detection zone carries a mobile, labelled antibody to the analyte sought. If the analyte is present, a labelled antibody/analyte complex is formed which reacts with a fixed, i.e., immobilized capture antibody in a capture zone to form a detectable product, usually one which is colored and visible to the naked eye.
It sometimes happens that the labelled antibody/analyte complex forms quite readily but does not sufficiently combine with capture antibody to produce an easily detectable signal. This might happen if no sufficient amount of complex contacts capture antibodies or contacts them in a configuration which is not optimum for forming a detectable reaction product. Other possible problems are insufficient incubation time or low antibody affinity.
These difficulties may be avoided by taking advantage of the biotin/avidin or biotin/streptavidin reaction or analogous reactions well known to the skilled artisan. These reactions are often used to increase the sensitivity of the diagnostic procedure.
In one application of this process, two antibodies are removably deposited in the detection zone and streptavidin is immobilized in the capture zone. The detector antibody is labelled, preferably with a metal such as gold, and reacts with one epitope on the analyte. The other antibody which is labelled with biotin reacts with another epitope on the analyte. The antibody mixture may be considered as a reagent system for use in detecting the presence of the analyte. If analyte is present, a complex containing labelled detector antibody/analyte/biotin labelled detector antibody will form in the detection zone. The complex will move through a cellular membrane by capillary action to the capture zone. When the complex reaches the immobilized streptavidin in the capture zone, the streptavidin binds to the biotin and concentrates the complex in a small area to form a detectable reaction product.
There are several known variations of this reaction. For example, the detection zone may contain a biotin labelled antibody together with streptavidin labelled with a colored label such as gold. The complex which forms and moves into the capture zone is an analyte/biotin labelled antibody/streptavidin gold-labelled complex which will move to the capture zone and concentrate in the capture zone by reaction with a capture antibody to form a detectable reaction product.
The above identified procedures have generally been described to involve reacti
Chin Christopher L.
Klauber & Jackson
Pham Minh-Quan K.
Spectral Diagnostics Inc.
LandOfFree
Analytical test device and method for use in medical diagnoses does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Analytical test device and method for use in medical diagnoses, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Analytical test device and method for use in medical diagnoses will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2554761