Analysis system

Chemical apparatus and process disinfecting – deodorizing – preser – Analyzer – structured indicator – or manipulative laboratory... – Sample mechanical transport means in or for automated...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C422S062000, C422S063000, C422S065000, C422S066000

Reexamination Certificate

active

06375898

ABSTRACT:

This application claims benefit under 35 USC §371 of EP/01092 filed Feb. 19, 1999.
BACKGROUND OF THE INVENTION
The invention relates to an analysis system, in particular for medical analysis work for carrying out clinical-chemical and immunological analyses.
Wet-chemical analysis systems, in which liquid reagents are provided in reagent containers which are held in suitable holders of a rotatable reagent rotor, are known. Furthermore, these known wet-chemical analysis systems have a sample rotor into which the samples contained in corresponding sample tubes are inserted. The reagent rotor is assigned a reagent pipettor, and the sample rotor is assigned a sample pipettor. A third rotor, a reaction rotor, is fitted with reaction cuvettes.
These known wet-chemical analysis systems operate as follows: the reagent pipettor is used to remove a predetermined amount of an analysis-specific reagent from the reagent containers contained in the reagent rotor and introduce this into a reaction cuvette, whereupon the sample pipettor removes a specified amount from a predetermined sample and introduces it into the reaction cuvette which has been filled with the reagent. The reaction cuvette, which in this way has been fed with a reagent and a sample, is moved from the reaction rotor to a measurement position, where, for example, a photometric measurement of the reaction solution is carried out, which is then evaluated on the basis of stored comparison values.
Wet-chemical analysis systems of this nature are suitable in particular for extensive series of tests or for a high incidence of analysis, as arises, for example, in clinical laboratories. Since the wet-chemical reagents contained in the open reagent vessels in the reagent plate have only a limited shelf life, a wet-chemical analysis system of this nature can only be operated if a certain minimum number of examinations are carried out in the system, since otherwise excessively frequent exchanging of reagents which have not been used but have expired is required, and this increases the operating costs.
As an alternative, a dry-chemical analysis system, in which reagents are applied to a carrier material in the solid state, is known. These reagent carriers are wetted with a predetermined amount of the sample, and the reagent carrier to which the sample has been applied is then examined in a detector device, for example by means of photometric measurement. However, these dry-chemical analysis systems have the drawback that the development costs for the reagent carriers are very high and that the samples generally have to be applied manually to the reagent carrier, so that these analysis systems are only suitable for single measurements or measurements with small numbers of samples or tests.
DE 33 18 573 A1 has disclosed an analysis appliance in which two concentrically rotatable rotors, i.e. an inner rotor for sample cuvettes and an outer rotor for measuring cuvettes, are provided, which rotors can be rotated independently of one another. Furthermore, in this appliance there is a pivotable working arm which, at its free end, is provided with a pipette. The pivot path of the pipette intersects the two rotors, so that in each case one measuring cuvette of the outer rotor and one sample cuvette of the inner rotor lie in the pivot path of the pipette. Furthermore, a measuring station, reagent bottles and a device for drying the pipette, as well as, if appropriate, a cleaning station for the pipette, are provided on the pivot path of the pipette, outside the outer rotor.
This known device operates as follows:
The arm with the pipetting device is pivoted over a sample cuvette located in the inner rotor, the pipette tip is immersed in the sample, and the sample is drawn into the pipette. The arm then pivots from the inner rotor to the outer rotor, above a measuring cuvette, and releases the sample into the measuring cuvette. Then, the measuring cuvette is taken hold of by a gripper situated on the arm, is lifted together with the arm, removed from the rotor and pivoted over the stationary measuring station, whereupon the measuring cuvette is lowered into the measuring station and released by the gripper. After this, the arm executes one or more further sequences of movements and, if appropriate after the pipette has first been cleaned, picks up one reagent or a plurality of reagents from the stationary reagent bottles, which are then injected into the measuring cuvette located in the measuring station. After the measurement has taken place, the measuring cuvette is returned to its position in the outer rotor by the arm.
A drawback of this known device is that the measuring cuvettes have to be transported out of and back to the rotor by the arm, making it necessary to provide the arm with a gripper, and consequently the arm structure becomes complex.
Furthermore, transporting the measuring cuvette from the outer rotor to the measuring station by means of the arm requires a certain time, during which the analysis appliance is not available for its actual task, i.e. for analysis.
DE 41 28 698 A1 has disclosed an analysis system in which sample vessels, reagent vessels and reaction vessels are arranged on a common rotor. This analysis system is equipped with a lifting pipettor which is arranged above the rotor edge and is able, by being lowered and raised, to pipette samples and reagent to and fro between different positions on the rotor, which rotates for this purpose. A photometric measuring station, which is able to carry out measurements on a fluid contained inside a reaction vessel in the rotor, is provided radially outside the rotor. The reagent vessels on the rotor of this known analysis system are formed by storage containers which are provided with dispensing openings, which the pipette tip of the pipetting arm can enter. Owing to the arrangement of the reagents on the rotor, and in particular within relatively large storage containers on the rotor, the number of reagents which can be used and/or the number of samples which can be analyzed is limited by the space available on the rotor, so that an analysis system of this nature can be used primarily for standardized, recurring tests which always use the same reagents.
EP 0,223,002 A2 has disclosed an automatic analysis system in which reagent carriers which are each provided with a plurality of holders are used. One of these holders serves as a measuring cuvette, one serves as a sample holder, and the other holders contain reagents. A plurality of reagent carriers are held next to one another in a magazine which can move in translation, it being possible to move the reagent-carrier holders of the magazine to in front of the entrance to a transfer station. The exit of the transfer station is directed towards spoke-like reagent-carrier holders of a rotary wheel. A system-reagent carrier which has been moved out of the magazine into the transfer station is processed in the transfer station, for which purpose pipetting and suction devices are connected to the transfer station. A sample which has been dealt with in the transfer station and is contained in an associated reagent carrier, after it has been dealt with in the transfer station, is transferred to the rotatable wheel, by which it is pivoted to in front of an optical analysis station, where the sample which is to be analyzed, which is located in the radially outer holder, is analyzed. The rotatable wheel of this known device therefore serves only as a means of transporting the reagent carriers.
SUMMARY OF THE INVENTION
The object of the present invention is to provide an analysis system in which both the appliance costs and the costs of the individual tests are low compared to the prior art and which has an extensive test menu and a simple work-flow concept, so that variable single-sample or multi-sample profiles can be carried out inexpensively.
This object is achieved by means of the analysis system, which comprises an analysis appliance and at least one system-reagent carrier, the analysis appliance having: at least one rotor which c

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Analysis system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Analysis system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Analysis system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2848508

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.