Chemical apparatus and process disinfecting – deodorizing – preser – Analyzer – structured indicator – or manipulative laboratory... – Sample mechanical transport means in or for automated...
Reexamination Certificate
2001-01-19
2003-09-23
Warden, Jill (Department: 1743)
Chemical apparatus and process disinfecting, deodorizing, preser
Analyzer, structured indicator, or manipulative laboratory...
Sample mechanical transport means in or for automated...
C422S073000, C422S063000, C422S105000, C436S180000, C436S049000, C137S266000, C137S263000
Reexamination Certificate
active
06623697
ABSTRACT:
The invention relates to an analysis device for analyzing samples, in particular for medical applications. The samples are preferably body liquids, as e.g. blood or urine. The target of the analysis is to detect the existence, or the concentration, respectively, of a component (analyte) of the sample.
In such analysis devices, the procedures necessary for the analysis are performed automatically. To this end, samples and reagent components are dosed into containers (reaction vessels), mixed and incubated for determined reaction times. The reaction of the sample with the reagents leads to a measurable change which is characteristic for the analysis, and is measured and evaluated for the determination of the analysis result. Numerous different analysis devices are known. These differ widely with respect to reaction principles (e.g. classical clinical chemistry; chemoimmunology, DNA analytics), and with respect to the measured variable characteristic for the analysis (e.g. photochemically measurable color changes, turbidimetry, electrochemical measurement) as well as with respect to the design of the apparatus. These different methods are known and are not the subject of the present invention.
Many analysis devices have in common that they comprise a plurality of (stationary or movable) stations, where partial steps of the procedure necessary for the analysis are performed. Most of these stations serve, in any form, for handling liquids; thus, they are generally designated liquid handling (LH) stations. Typical examples are dosing stations, where a liquid (reagent or sample) is dosed into a reaction vessel by means of thin tubes (dosing needles), or mixing stations, where liquids are mixed with other liquids and/or solid components (e.g. suspended pellets as carriers for fixed immune reagents, so-called beads) by means of a stirrer immerged into the reaction vessel. Measurement stations, too, can be regarded as LH stations, as far as the measurement requires a liquid handling step, as e.g. the filling and emptying of a measuring cell.
The LH stations of such analysis devices typically include one or more washing stations, where a processing tool, e.g. a dosing needle or a stirrer, is cleaned. A very good cleaning of the tools which are submerged into liquids of different composition, is very important with respect to the exactness of the analysis, as impurities lead to a transfer of one liquid to another (passive dispersal). In order to obtain a cleaning as effective as possible, different designs of washing stations were proposed. An example of washing stations which can be applied very advantageously with the present invention, is described in international patent application WO 97/35173.
At a part of the LH stations of common analysis devices there is a production of liquid waste which must be disposed of. In case of washing stations, the liquid waste consists, in particular, of the washing liquids used there, with the washed-off residues of reagents and/or samples. At other LH stations there may be produced liquid waste, too, e.g. a reaction mixture at the measuring station which is not needed any longer after the termination of the measurement. At other processing stations, e.g., dosing surpluses may be produced, being evacuated at an overflow of the reaction vessel. All LH stations producing liquid waste are designated here as liquid waste sources.
Typically, the liquid waste is disposed of by guiding it into a liquid waste container via a conducting system. For some analysis devices, the liquid waste container is arranged in such a way below the liquid waste sources, that the liquid waste drains by gravity only. However, this requires a relatively high design shape of the device as well as liquid waste tubes with large diameter and sufficient gradient. Furthermore, the washing stations of such devices must be designed in a way that the washing liquid drains spontaneously. In order to avoid these problems, pumps are used which evacuate the liquid waste at the liquid waste sources and transport it to the liquid waste container.
Generally, the liquid waste produced at the liquid waste sources of analysis devices does not only consist of liquids, but contains portions of air, which vary with respect to their quantity during the procedure performed by the analysis device. Thus, the term “liquid waste” must be understood in a way that this is a kind of waste which can be pumped as a liquid, but may, apart from the liquid components, contain air (or other gases) as well as dispersed solid matter. As far as the liquid portion of the waste is referred to here, this is the average volume ratio of liquid in the tubes leading from the corresponding liquid waste source to the liquid waste container, during the processing of the device.
The liquid waste of analysis devices usually contains components (in particular detergents contained in washing liquids and in reagents) which produce foam in the liquid waste container. This leads to severe disadvantages. The foam rapidly fills the liquid waste container, making it necessary to empty it in order to avoid contamination. Furthermore, the foam interferes with the liquid level detection most liquid waste containers are equipped with.
For decreasing the foam production in the liquid waste container, it is possible to add chemical substances (antifoam) to the liquid waste, which impede the foam production. However, this requires additional handling steps and/or special constructive measures on the device for the dosing of antifoam compounds. Furthermore, the chemical foam elimination causes additional cost and, possibly, additional problems with the environmentally appropriate disposal if the liquid waste from the liquid waste container.
Another possibility for reducing the problems caused by foam production is the use of particularly big liquid waste containers. However, this is contrary to the required space-saving design of analysis devices.
On this basis, the invention addresses the problem to reduce the foam production in the liquid waste containers of analysis devices with as little expense as possible, with respect to the design of the device as well as with respect to the handling of the device.
This problem is solved by an analysis device for analyzing samples, in particular body liquids, with respect to components contained therein, with a plurality of liquid handling (LH) stations, which include processing stations. At these processing stations, processing steps are performed by means of processing tools as e.g. a dosing needle or a stirrer, at liquids contained in containers. At at least a part of the LH station, liquid waste is produced, thus forming liquid waste sources. The liquid waste produced there, containing different portions of air, is evacuated by means of at least one pump, from the liquid waste sources, via a liquid waste conducting system, to a liquid waste container. The liquid waste conducting system has at least two separate tubes leading into the liquid waste container; a plurality of liquid waste sources is connected to at least one of these tubes. From these sources, there are separate tubes acting as secondary lines and guiding towards a line junction. From this line junction, a common tube leads as primary line into the liquid waste container. The secondary lines are grouped together in such a way that in one of the at least two lines guiding into the liquid waste container, there is liquid waste with a higher portion of air, and in another of the at least two lines guiding into the liquid waste container, there is liquid waste with a lower portion of air.
Analysis devices with conducting systems which comprise a plurality of separate liquid waste lines conducted to the liquid waste container, are known in different designs, e.g. from U.S. Pat. No. 5,820,824, EP 0825446 A2 and EP 0918221 A2.
In the scope of this invention it was determined that the foam production can be reduced dramatically by combining the liquid waste flow from the different liquid waste sources depending on the average amount of air tran
Fuerst Otto
Jaeck Thomas
Jansen Paul
Gordon Brian R.
Roche Diagnostics GmbH
Warden Jill
Woodard Emhardt Moriarty McNett & Henry LLP
LandOfFree
Analysis device for analyzing samples does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Analysis device for analyzing samples, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Analysis device for analyzing samples will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3015964