Analog self-synchronization subsystem based on peak...

Dynamic magnetic information storage or retrieval – General processing of a digital signal – Data clocking

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C360S065000

Reexamination Certificate

active

06233107

ABSTRACT:

FIELD OF THE INVENTION
This invention relates generally to the field of a digital magnetic recording channels that are used in systems of mass storage of computer data, such as disc and tape drives. More particularly, but not by way of limitations, the invention is directed toward improvements of self-synchronization and, therefore, the reliability of such channels and of overall computer data storage
BACKGROUND OF THE INVENTION
One type of signal processing typically associated with high-density magnetic recording channels is time-domain equalization. Such equalization is used to reshape a readback signal received by the channel to an approximation of a desired target waveform in the time domain, such as used in a Partial Response, Maximum Likelihood (PRML) detection read channel. As will be recognized, reshaping the readback signal allows intersymbol interference (ISI) to be reduced and controlled, facilitating reliable sequential decoding of the digital information stored on disc.
A second type of signal processing typically used in a magnetic recording channel is self-synchronization, which involves synchronization of the rate of data recovery with the rate of incoming readback signal, which varies as a result of the variations of a speed of rotating disc and radial position of the associated head. Typically, such self-synchronization is achieved through the use of a Phase Locked Loop (PLL) frequently referred also as a Phase Locked Ocsillator (PLO) or as a Voltage Controlled Oscillator (VCO), which generates clock signal for the sampling of equalized signals at appropriate moments and for subsequent recovery of the stored data from the samples.
Practical implementations of both equalization and self-synchronization are discussed, for example, in U.S. Pat. No. 5,422,760 entitled “Disc Drive Method Using Zoned Data Recording And Prml Sampling Data Detection With Digital Adaptive Equalization”, issued Jun. 6 1995 to Abbott et al and in the paper by Cideciyan et al entitled “A PRML System for Digital Magnetic Recording”, IEEE Journal on Selected Areas in Communications, vol. 10, no. 1, Jan 1992. Additionally, for detailed discussion of self-synchronization see U.S. Pat. No. 5,459,757 entitled “Timing And Gain Control Circuit For A PRML Read Channel,” issued Oct. 17, 1995 to Minuhin et al. and U.S. Pat. No. 5,854,717 entitled “Self-Synchronization in a Magnetic Recording Channel Utilizing Time-Domain Equalization,” issued Dec. 29, 1998 to Minuhin (Minuhin '717), both of which are assigned to the assignee of the present invention.
As taught by these references, self-synchronization is derived from the equalized signal at the output of the equalizer. The basis for this approach is discussed by Mueller's and Muller's in the paper entitled “Timing Recovery in Digital Synchronous Data Receivers”, IEEE Transaction on Communications, No.5, May 1976, pp.516-531. It is significant to note that although this approach to self-synchronization was directed toward a digital communication channel and was not developed specifically for magnetic recording channels, practical analog and digital magnetic recording channels utilizing time domain equalization usually use this approach.
Significant limitations, however, have been encountered in the application of the Mueller's and Muller's approach to self-synchronization in magnetic recording channels.
First, the procedures for equalization and self-synchronization are interdependent; that is, to achieve optimal equalization, one needs to employ a clock having an optimal phase (for a given analog input signal), while to derive a clock with an optimal phase one needs an optimally equalized signal.
Second, actual timing error signal for the PLL from the output of the equalizer is corrupted by both the residual equalization error that results from imperfect equalization and by the filtered noise. For certain pattern combinations, the residual equalization error can be indistinguishable from the systematic timing error, so that PLL can be incorrectly driven out of correct phase (and further, for especially “bad patterns”, the PLL can be made to lose lock altogether).
Third, in practice, time-domain equalization usually requires a high frequency boost and large mismatch between the target shape and the original “head/media” signal. As a result, significant noise enhancement occurs at the output of the equalizer that further corrupts the timing signal.
Fourth, the locking range of a timing error sensor circuit for sampled signals is generally small, so that in a noisy environment, the PLL may be additionally prone to lose lock.
Finally, in the case of the use of digital equalization, the analog to digital converter (A/D), the equalizer and the signal processing circuit employed to calculate timing error are inside of the PLL. The associated delays from these hardware units result in so-called “transportation delay” or “dead time” which adversely affect the performance and stability of the PLL.
As a result of these and other limitations, there is a need for an improved approach to self-synchronization in a sampled magnetic recording channel which overcomes the deficiencies of the prior art. In addition, a need exists for a solution which enables self-synchronization utilizing relatively low-complexity and low power-consuming circuitry. Also, this solution preferably will provide self-synchronization in a manner such that delays associated with time-domain equalization of readback signal and signal processing delays in data recovery do not affect performance of the PLL. Finally, this solution preferably will provide lock limits that are significantly greater than those used in a prior art, facilitating more reliable operation of the PLL.
The present invention provides a solution to this and other problems, and offers other advantages over the prior art.
SUMMARY OF THE INVENTION
The present invention is also based on realization that the output of the equalizer used for the data recovery is a “bad place” to look for the timing errors. Much better synchronization can be achieved by using a separate parallel analog peak-detection-based clock channel with its own special filter that allows more ISI, but provides better suppression of noise than the filter in the data channel. The required error rate for timing recovery in that channel is much less stringent than that for data recovery because infrequent single errors in PLL correction will not affect correct data recovery, since an analog PLL filter provides substantial integrating action. The present invention anticipates the existence of a programmable delay between outputs of parallel data and clock channels and periodical adjustment (calibration) of that delay to synchronize channel outputs. However, unlike the Minuhin '717 patent identified previously, the peak detection channel of the present invention does not employ traditional low-pass-filtered and low-pass-filtered-and-differentiated readback signal outputs. Rather, the present invention works only with differentiated signals.
Furthermore, the present invention utilizes a special feature of a peak detection channel that was not employed in Minuhin '717. This feature can be explained as follows. When detected peak pulse is erroneously (due to noise or ISI) shifted (incorrectly) into an adjacent detection window, it will be close to the boundary between correct and incorrect window. As well known by those, skilled in the art, the position of peak pulse close to window boundary results in a very strong correction of the VCO, and it may be wrong correction. This feature is exploited in the present invention. The special post-processing procedure and hardware are utilized in the present invention that allows to recognize an event of strong PLO correction, which can be erroneous correction and then either to neutralize this correction immediately by injecting a special current pulse into the PLL filter, or, using a prehistory of previous corrections make decision if this strong correction was in the right or wrong direc

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Analog self-synchronization subsystem based on peak... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Analog self-synchronization subsystem based on peak..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Analog self-synchronization subsystem based on peak... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2537329

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.