Computer graphics processing and selective visual display system – Plural physical display element control system – Display elements arranged in matrix
Reexamination Certificate
1999-12-21
2003-07-08
Chang, Kent (Department: 2673)
Computer graphics processing and selective visual display system
Plural physical display element control system
Display elements arranged in matrix
C345S690000, C345S581000
Reexamination Certificate
active
06590549
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to the field of display systems, more particularly to micromirror-based display systems, still more particularly to bistable micromirror-based display systems that perform analog pulse width modulation.
BACKGROUND OF THE INVENTION
Micromechanical devices are small structures typically fabricated on a semiconductor wafer using techniques such as optical lithography, doping, metal sputtering, oxide deposition, and plasma etching which have been developed for the fabrication of integrated circuits.
Digital micromirror devices (DMDs), sometimes referred to as deformable micromirror devices, are a type of micromechanical device. Other types of micromechanical devices include accelerometers, pressure and flow sensors, gears and motors. While some micromechanical devices, such as pressure sensors, flow sensors, and DMDs have found commercial success, other types have not yet been commercially viable.
Digital micromirror devices are primarily used in optical display systems. In display systems, the DMD is a light modulator that uses digital image data to modulate a beam of light by selectively reflecting portions of the beam of light to a display screen. While analog modes of operation are possible—that is modes in which the mirror deflection is a function of the input data or bias voltage—DMDs typically operate in a digital bistable mode of operation in which the mirror is fully deflected at all times regardless of the image data applied to the mirror.
Micromirrors have evolved rapidly over the past ten to fifteen years. Early devices used a deformable reflective membrane which, when electrostatically attracted to an underlying address electrode, dimpled toward the address electrode. Schlieren optics illuminate the membrane and create an image from the light scattered by the dimpled portions of the membrane. Schlieren systems enabled the membrane devices to form images, but the images formed were very dim and had low contrast ratios, making them unsuitable for most image display applications.
Later micromirror devices used flaps or diving board-shaped cantilever beams of silicon or aluminum, coupled with dark-field optics to create images having improved contrast ratios. Flap and cantilever beam devices typically used a single metal layer to form the top reflective layer of the device. This single metal layer tended to deform over a large region, however, which scattered light impinging on the deformed portion. Torsion beam devices use a thin metal layer to form a torsion beam, which is referred to as a hinge, and a thicker metal layer to form a rigid member, or beam, typically having a mirror-like surface: concentrating the deformation on a relatively small portion of the DMD surface. The rigid mirror remains flat while the hinges deform, minimizing the amount of light scattered by the device and improving the contrast ratio of the device.
Recent micromirror configurations, called hidden-hinge designs, further improve the image contrast ratio by fabricating the mirror on a pedestal above the torsion beams. The elevated mirror covers the torsion beams, torsion beam supports, and a rigid yoke connecting the torsion beams and mirror support, further improving the contrast ratio of images produced by the device.
All micromirror-based projection displays use pulse-width modulation to control the amount of light that reaches each pixel of an image plane. Typical pulse width modulation schemes divide a frame period into binary bit periods. Each image data bit in the input data word controls the operation of the mirror during one bit period. Thus, if the bit is active, the mirror is turned on during the bit period and light from a light source is directed to the image plane during the bit period. If the image data bit is not active, the mirror is turned off during the bit period and light from the light source is directed away from the image plane during the bit period. The human eye, or other photoreceptor, integrates the energy directed to each pixel to create the perception of intermediate intensity levels. Typical binary pulse width modulation systems divide the larger bit periods into two or more bit-splits which are distributed throughout the frame period. Spreading the contribution of the large data bits throughout the frame period eliminates some of the artifacts created by the binary pulse width modulator schemes.
While not described above, the creation of full-color image requires either three DMD spatial light modulators simultaneously producing monochromatic images. The three primary monochromatic images are superimposed to create a single full-color image. Alternatively, a single DMD is used in combination with a color wheel or other sequential filter mechanism. The color wheel divides the white light beam into three primary color monochromatic light beams that are sequentially modulated to create single-color sub-images. The three primary color monochromatic images are integrated by the viewer to create the perception of a single full-color image.
Although binary pulse width modulation provides a convenient means to create intermediate intensity levels and utilizes binary data that is easily processed to improve the displayed images, binary pulse width modulation systems require a very large amount of memory and processing hardware. Thus, although DMD-based display systems are capable of creating virtually perfect images, the cost of such image quality drives the DMD-based projection system out of the reach of many consumers. What is needed is a method and system for creating high-quality images with display systems having much less processing power
SUMMARY OF THE INVENTION
Objects and advantages will be obvious, and will in part appear hereinafter and will be accomplished by the present invention which provides a method and system for analog pulse width modulation of a spatial light modulator. One embodiment of the claimed invention provides a method of operating an element of the spatial light modulator. The method comprises the steps of providing a pixel data signal and a reference signal to the element, comparing the pixel data signal and the reference signal as at least one of the signals changes, and operating the element according to the results of the comparison. The reference voltage is typically a ramping voltage that also performs a degamma operation.
According to another embodiment of the disclosed invention, a micromirror device is provided. The micromirror device comprises at least two address electrodes, a deflectable mirror element suspended above the address electrodes, a capacitor for storing charge representing an image data signal, a reference voltage input, and a comparator receiving the image data signal and the reference voltage. The comparator compares the reference voltage input and the image data signal and provides address voltages to the address electrodes to cause a deflection of the deflectable mirror element.
Yet another embodiment of the disclosed invention provides the analog pulse width modulated micromirror cell in a display system. The display system comprises a light source for providing a beam of light along a light path, an array of micromirror cells on the light path, each micromirror cell operable to selectively reflect incident light along a projection path, a controller providing the image data signal to the micromirror array, and projection optics on the projection path. The projection optics focus the selectively reflected incident light on an image plane. Each micromirror cell in the display comprises: at least two address electrodes, a deflectable mirror element suspended above the address electrodes, a capacitor storing a charge representative of an image data signal, a reference voltage input, and a comparator receiving the image data signal and the reference voltage, the comparator comparing the reference voltage input and image data signals and providing address voltages to the two address electrodes to cause a deflection of the deflectable element.
The disclosed analog pulse widt
Brady III Wade James
Brill Charles A.
Chang Kent
Telecky , Jr. Frederick J.
Texas Instruments Incorporated
LandOfFree
Analog pulse width modulation of video data does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Analog pulse width modulation of video data, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Analog pulse width modulation of video data will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3081893