Amplification of nucleic acids with electronic detection

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving nucleic acid

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S091100, C435S091200, C536S023100, C536S025300

Reexamination Certificate

active

06686150

ABSTRACT:

FIELD OF THE INVENTION
The invention relates to compositions and methods useful in the detection of nucleic acids using a variety of amplification techniques, including both signal amplification and target amplification. Detection proceeds through the use of an electron transfer moiety (ETM) that is associated with the nucleic acid, either directly or indirectly, to allow electronic detection of the ETM using an electrode.
BACKGROUND OF THE INVENTION
The detection of specific nucleic acids is an important tool for diagnostic medicine and molecular biology research. Gene probe assays currently play roles in identifying infectious organisms such as bacteria and viruses, in probing the expression of normal genes and identifying mutant genes such as oncogenes, in typing tissue for compatibility preceding tissue transplantation, in matching tissue or blood samples for forensic medicine, and for exploring homology among genes from different species.
Ideally, a gene probe assay should be sensitive, specific and easily automatable (for a review, see Nickerson, Current Opinion in Biotechnology 4:48-51 (1993)). The requirement for sensitivity (i.e. low detection limits) has been greatly alleviated by the development of the polymerase chain reaction (PCR) and other amplification technologies which allow researchers to amplify exponentially a specific nucleic acid sequence before analysis as outlined below (for a review, see Abramson et al., Current Opinion in Biotechnology, 4:41-47 (1993)).
Sensitivity, i.e. detection limits, remain a significant obstacle in nucleic acid detection systems, and a variety of techniques have been developed to address this issue. Briefly, these techniques can be classified as either target amplification or signal amplification. Target amplification involves the amplification (i.e. replication) of the target sequence to be detected, resulting in a significant increase in the number of target molecules. Target amplification strategies include the polymerase chain reaction (PCR), strand displacement amplification (SDA), nucleic acid sequence based amplification (NASBA), and transcription mediated amplification (TMA).
Alternatively, rather than amplify the target, alternate techniques use the target as a template to replicate a signalling probe, allowing a small number of target molecules to result in a large number of signalling probes, that then can be detected. Signal amplification strategies include the ligase chain reaction (LCR), cycling probe technology (CPT), Invader™, Q-beta replicase (QBR), and the use of “amplification probes” such as “branched DNA”that result in multiple label probes binding to a single target sequence.
The polymerase chain reaction (PCR) is widely used and described, and involve the use of primer extension combined with thermal cycling to amplify a target sequence; see U.S. Pat. Nos. 4,683,195 and 4,683,202, and PCR Essential Data, J. W. Wiley & sons, Ed. C. R. Newton, 1995, all of which are incorporated by reference. In addition, there are a number of variations of PCR which may also find use in the invention, including “quantitative competitive PCR”or “QC-PCR”, “arbitrarily primed PCR” or “AP-PCR”, “immuno-PCR”, “Alu-PCR”, “PCR single strand conformational polymorphism” or “PCR-SSCP”, “reverse transcriptase PCR” or “RT-PCR”, “biotin capture PCR”, “vectorette PCR”. “panhandle PCR”, and “PCR select cDNA subtration”, among others.
Strand displacement amplification (SDA) is generally described in Walker et al., in Molecular Methods for Virus Detection, Academic Press, Inc., 1995, and U.S. Pat. Nos. 5,455,166 and 5,130,238, all of which are hereby incorporated by reference.
Nucleic acid sequence based amplification (NASBA) is generally described in U.S. Pat. No. 5,409,818; Sooknanan et al., Nucleic Acid Sequence-Based Amplification, Ch. 12 (pp. 261-285) of Molecular Methods for Virus Detection, Academic Press, 1995; and “Profiting from Gene-based Diagnostics”, CTB International Publishing Inc., N.J., 1996, both of which are incorporated by reference.
Transcription mediated amplification (TMA) is generally described in U.S. Pat. Nos. 5,399,491, 5,888,779, 5,705,365, 5,710,029, all of which are incorporated by reference.
Cycling probe technology (CPT) is a nucleic acid detection system based on signal or probe amplification rather than target amplification, such as is done in polymerase chain reactions (PCR). Cycling probe technology relies on a molar excess of labeled probe which contains a scissile linkage of RNA. Upon hybridization of the probe to the target, the resulting hybrid contains a portion of RNA:DNA. This area of RNA:DNA duplex is recognized by RNAseH and the RNA is excised, resulting in cleavage of the probe. The probe now consists of two smaller sequences which may be released, thus leaving the target intact for repeated rounds of the reaction. The unreacted probe is removed and the label is then detected. CPT is generally described in U.S. Pat. Nos. 5,011,769, 5,403,711, 5,660,988, and 4,876,187, and PCT published applications WO 95/05480, WO 95/1416, and WO 95/00667, all of which are specifically incorporated herein by reference.
The ligation chain reaction (LCR) involve the ligation of two smaller probes into a single long probe, using the target sequence as the template for the ligase. See generally U.S. Pat. Nos. 5,185,243 and 5,573,907; EP 0 320 308 B1; EP 0 336 731 B1; EP 0 439 182 B1; WO 90/01069; WO 89/12696; and WO 89/09835, all of which are incorporated by reference.
Q-beta replicase (QBR) is a mRNA amplification technique, similar to NASBA and TMA, that relies on an RNA-dependent RNA polymerase derived from the bacteriophage Q-beta that can synthesize up to a billion stands of product from a template.
Invader™ technology is based on structure-specific polymerases that cleave nucleic acids in a site-specific manner. Two probes are used: an “invader” probe and a “signalling” probe, that adjacently hybridize to a target sequence with a non-complementary overlap. The enzyme cleaves at the overlap due to its recognition of the “tail”, and releases the “tail” with a label. This can then be detected. The Invader™ technology is described in U.S. Pat. Nos. 5,846,717; 5,614,402; 5,719,028; 5,541,311; and 5,843,669, all of which are hereby incorporated by reference.
“Rolling circle amplification” is based on extension of a circular probe that has hybridized to a target sequence. A polymerase is added that extends the probe sequence. As the circular probe has no terminus, the polymerase repeatedly extends the circular probe resulting in concatamers of the circular probe. As such, the probe is amplified. Rolling-circle amplification is generally described in Baner et al. (1998)
Nuc. Acids Res.
26:5073-5078; Barany, F. (1991)
Proc. Natl. Acad. Sci. USA
88:189-193; Lizardi et al. (1998)
Nat. Genet.
19:225-232; Zhang et al., Gene 211:277 (1998); and Daubendiek et al., Nature Biotech. 15:273 (1997); all of which are incorporated by reference in their entirety.
“Branched DNA” signal amplification relies on the synthesis of branched nucleic acids, containing a multiplicity of nucleic acid “arms” that function to increase the amount of label that can be put onto one probe. This technology is generally described in U.S. Pat. Nos. 5,681,702, 5,597,909, 5,545,730, 5,594,117, 5,591,584, 5,571,670, 5,580,731, 5,571,670, 5,591,584, 5,624,802, 5,635,352, 5,594,118, 5,359,100, 5,124,246 and 5,681,697, all of which are hereby incorporated by reference.
Similarily, dendrimers of nucleic acids serve to vastly increase the amount of label that can be added to a single molecule, using a similar idea but different compositions. This technology is as described in U.S. Pat. No. 5,175,270 and Nilsen et al., J. Theor. Biol. 187:273 (1997), both of which are incorporated herein by reference.
Finally, U.S. Pat. Nos. 5,591,578, 5,824,473, 5,770,369, 5,705,348, and 5,780,234, and PCT application WO098/20162 describe novel compositions comprising nucleic acids containing electron transfer moieties, including electrodes, which allow for novel dete

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Amplification of nucleic acids with electronic detection does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Amplification of nucleic acids with electronic detection, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Amplification of nucleic acids with electronic detection will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3285303

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.