Ampholyte polymer composition and method of use

Earth boring – well treating – and oil field chemistry – Earth boring – Contains organic component

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C507S121000, C526S287000, C526S292200, C166S295000, C162S168200

Reexamination Certificate

active

06482776

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to novel ampholyte polymers, polymer compositions and methods for using such polymers in applications wherein polymer deposition and substantivity is important. In general terms, the polymers and polymer compositions of the present invention are believed to be useful in the treatment of substrates or used in combination with substrates such as those that are composed primarily of cellulose, minerals, pigments, clays and cement or in the area of cosmetics.
BACKGROUND OF THE INVENTION
The interaction of polyelectrolyte with substrates that carry a charge is at the heart of many industrial processes. The basic science that explains the function of coagulants and flocculants can be applied to many end use applications, such as paper manufacturing, cosmetics dispersion and suspension stabilization, as well as fluid loss control in oil field cementing and drilling operations.
Polyelectrolytes are for example used in the papermaking process. Papermaking, as it is conventionally known, is a process of introducing an aqueous slurry of pulp or wood cellulosic fibers (which have been beaten or refined to achieve a level of fiber hydration and to which a variety of functional additives can be added) onto a screen or similar device in such a manner that the water is removed, thereby forming a sheet of the consolidated fibers, which upon pressing and drying can be processed into dry roll or sheet form. Two well known papermaking operations involve the Fourdrinier machine, the most common, and the cylinder machine. In the Fourdrinier and multicylinder operations, and in other machine operations, as typical in papermaking, the feed or inlet to the machine is an aqueous slurry or water suspension of pulp fibers which is provided from what is called the “wet end” system. In the wet end, the pulp along with other additives are mixed in an aqueous slurry and subject to mechanical and other operations such as beating and refining to improve interfiber bonding and other physical properties of the finished sheet. Additives commonly introduced along with the pulp fibers are pigments such as titanium dioxide, mineral fillers such as clay and calcium carbonate and other materials introduced into paper to achieve such properties as improved brightness, opacity, smoothness, ink receptivity, fire retardant, water resistance, increased bulk, etc. Also useful in papermaking are colloidal inorganic minerals, such as colloidal silica, which are added to what is typically known as a microparticle system to give better sheet formation.
The term “paper, as used herein, includes sheet-like masses and molded products made from natural sources, synthetics such as polyamides, polyesters, rayon and polyacrylic resins as well as from mineral fibers such as asbestos and glass. In addition, paper made from combinations of cellulosic and synthetic materials are applicable herein. Paperboard is also included within the broad term “paper”.
There remains a need for an additive that will substantively bind the fibers and other additives while not negatively impacting water removal from the forming sheet.
In an ink jet recording method, recording is generally carried out by jetting fine drops of ink using a variety of mechanisms so as to form images on a recording paper. Therefore, the recording method of ink jet type has advantages in that it is less noisy, can provide full-color prints with ease and enables high-speed printing, compared with the recording method of dot impact type.
For the paper used in such an ink jet recording method, it is usually required to have properties of (1) ensuring high-speed drying of ink, (2) being free from cissing, feathering and overflowing of ink, (3) providing recorded images of high optical density, and (4) causing no rippling trouble upon absorption of ink.
In addition, ink jet printers have had remarkable development in recent years, so that they have come to ensure considerable colorfulness and vividness in the recorded images. Thus, recording media also have been required to be higher grade merchandise. As matters now stand, it is known that higher grade recorded image which can give such a feeling of higher quality as those provided by photography or high grade printed matter can be obtained by choosing a recording medium having a glossy surface.
However, the need for reduction in running cost has also grown in proportion as prices of ink jet printers have declined. Since most of glossy recording media on the market use as their substrates more expensive materials, such as plastic films or laminated papers, they cannot meet the aforesaid need.
In contrast to the recording media on the market in which films or the like are used as substrate, cast-coated paper uses low-priced paper as a substrate and can be prepared in a relatively simple process, so that it has the advantage of a substantially lower cost. Further, as the recording side of cast-coated paper can be rendered glossy, the cast-coated paper is suitable for ink jet recording paper which can give a feeling of high quality and can provide high grade recorded images at a lower price.
High grade ink jet images depend on the formation of “dots” that contrast sharply with the color of the paper. If the ink jet dyes “wick into the paper with the ink vehicle, “fuzzy” dot boundaries result and color intensity is decreased. There remains a need for a material that will substantively bind dye or pigment particles to the surface of ink jet printed paper so that sharply contrasting intense dots are formed.
Another area in which polyelectrolytes provide benefit is in drilling fluids. It is well known that in perforating earthen formations to tap subterranean deposits such as gas or oil, that perforation is accomplished by well drilling tools and a drilling fluid. These rotary drilling systems consist of a drilling bit fitted with appropriate ‘teeth’, then a set of pipes assembled rigidly together end to end, the diameter of which is smaller than that of the drilling bit. This whole rigid piece of equipment, drill bit and drill pipe string, is driven into rotation from a platform situated above the well being drilled. As the drill bit attacks and goes through the geological strata, the crushed mineral materials must be cleared away from the bottom of the hole to enable the drilling operation to continue. Aqueous clay dispersion drilling fluids are recirculated down through the hollow pipe, across the face of the drill bit, and upward through the hole. The drilling fluid serves to cool and lubricate the drill bit, to raise the drilling cuttings to the surface of the ground, and to seal the sides of the well to prevent loss of water and drilling fluids into the formation through which the drill hole is being bored. After each passage through the well, the mud is passed through a settling tank or trough wherein the sand and drill cuttings are separated, with or without screening. The fluid is then again pumped into the drill pipe by a mud pump.
Some of the most serious problems encountered in producing and maintaining effective clay-based aqueous drilling fluids are caused by the interaction of the mud with the earth formation being drilled. These interactions include contamination of the mud by formation fluids, incorporation into the mud of viscosity producing and inert drilled solids, chemical contamination by drilled solids, or by the infiltration of sea-water and/or fresh water. The conditions of high temperature and pressure inherent with deeper and deeper drilling operations, together with formation interactions, make drilling fluid behavior unreliable and difficult to reproduce.
Characteristics of an ideal drilling fluid would then include the following:
i) To have Theological characteristics as desirable as possible to be able to transport the mineral cuttings set in dispersion.
ii) To allow the separation of cuttings by all known means as soon as the mud flows out of the hole.
iii) To have such required density as to exert sufficient pressure on the drilled geological formations

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Ampholyte polymer composition and method of use does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Ampholyte polymer composition and method of use, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ampholyte polymer composition and method of use will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2948144

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.